Please use this identifier to cite or link to this item:
Title: Studies on SI engine simulation and air/fuel ratio control systems design
Authors: Bai, Yang
Advisors: Chen, J
Zhao, H
Keywords: Engine simulation;Air/fuel ratio control;NN based AFR predictive control
Issue Date: 2013
Publisher: Brunel University School of Engineering and Design PhD Theses
Abstract: More stringent Euro 6 and LEV III emission standards will immediately begin execution on 2014 and 2015 respectively. Accurate air/fuel ratio control can effectively reduce vehicle emission. The simulation of engine dynamic system is a very powerful method for developing and analysing engine and engine controller. Currently, most engine air/fuel ratio control used look-up table combined with proportional and integral (PI) control and this is not robust to system uncertainty and time varying effects. This thesis first develops a simulation package for a port injection spark-ignition engine and this package include engine dynamics, vehicle dynamics as well as driving cycle selection module. The simulations results are very close to the data obtained from laboratory experiments. New controllers have been proposed to control air/fuel ratio in spark ignition engines to maximize the fuel economy while minimizing exhaust emissions. The PID control and fuzzy control methods have been combined into a fuzzy PID control and the effectiveness of this new controller has been demonstrated by simulation tests. A new neural network based predictive control is then designed for further performance improvements. It is based on the combination of inverse control and predictive control methods. The network is trained offline in which the control output is modified to compensate control errors. The simulation evaluations have shown that the new neural controller can greatly improve control air/fuel ratio performance. The test also revealed that the improved AFR control performance can effectively restrict engine harmful emissions into atmosphere, these reduce emissions are important to satisfy more stringent emission standards.
Description: This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.
Appears in Collections:Mechanical and Aerospace Engineering
Dept of Mechanical Aerospace and Civil Engineering Theses

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf4.74 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.