Please use this identifier to cite or link to this item:
Title: Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα
Authors: Samejima, K
Samejima, I
Vagnarelli, P
Ogawa, H
Vargiu, G
Kelly, DA
de Lima Alves, F
Kerr, A
Green, LC
Hudson, DF
Ohta, S
Cooke, CA
Farr, CJ
Rappsilber, J
Earnshaw, WC
Keywords: Adenosine Triphosphatases;Animals;Antigens, Neoplasm;Chickens;Chromatids;Chromosomes;DNA Topoisomerases, Type II;DNA-Binding Proteins;Kinesin;Mitosis;Multiprotein Complexes;Mutation;Nuclear Proteins;Tumor Cells, Cultured
Issue Date: 2012
Publisher: Rockefeller University Press
Citation: Journal of Cell Biology, 199(5), 755 - 770, 2012
Abstract: Mitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic "X" shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the "intrinsic structure" of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology.
Description: © 2012 Samejima et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date
ISSN: 0021-9525
Appears in Collections:Biological Sciences
Dept of Life Sciences Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf3.87 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.