Please use this identifier to cite or link to this item: http://buratest.brunel.ac.uk/handle/2438/7613
Title: Artificial neural networks for controlling the temperature of internally cooled turning tools
Authors: Wardle, F
Minton, T
Ghani, SBC
Fϋrstmann, P
Roeder, M
Richarz, S
Sammler, F
Keywords: Control systems;In-process control;Artificial neural network;Machine tools
Issue Date: 2013
Publisher: Scientific Research Publishing
Citation: Modern Mechanical Engineering, 3(2A), pp. 10, Jun 2013
Abstract: By eliminating the need for externally applied coolant, internally cooled turning tools offer potential health, safety and cost benefits in many types of machining operation. As coolant flow is completely controlled, tool temperature mea- surement becomes a practical proposition and can be used to find and maintain the optimum machining conditions. This also requires an intelligent control system in the sense that it must be adaptable to different tool designs, work piece materials and machining conditions. In this paper, artificial neural networks (ANN) are assessed for their suitability to perform such a control function. Experimental data for both conventional tools used for dry machining and internally cooled tools is obtained and used to optimise the design of an ANN. A key finding is that both experimental scatter characteristic of turning and the range of machining conditions for which ANN control is required have a large effect on the optimum ANN design and the amount of data needed for its training. In this investigation, predictions of tool tem- perature with an optimised ANN were found to be within 5°C of measured values for operating temperatures of up to 258°C. It is therefore concluded that ANN’s are a viable option for in-process control of turning processes using inter- nally controlled tools.
Description: Copyright @ 2013 Scientific Research Publishing
URI: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=33472
http://bura.brunel.ac.uk/handle/2438/7613
DOI: http://dx.doi.org/10.4236/mme.2013.32A001
ISSN: 2164-0165
Appears in Collections:Mechanical and Aerospace Engineering
Advanced Manufacturing and Enterprise Engineering (AMEE)
Dept of Mechanical Aerospace and Civil Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf2.18 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.