Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShipley, RJ-
dc.contributor.authorWebb, SD-
dc.contributor.authorWaters, SL-
dc.contributor.authorMcDougall, SR-
dc.contributor.authorRoberts, F-
dc.contributor.author2nd Micro and Nano Flows Conference (MNF2009)-
dc.identifier.citation2nd Micro and Nano Flows Conference, Brunel University, West London, UK, 01-02 September 2009en_US
dc.descriptionThis paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.en_US
dc.description.abstractThe goal of any cancer therapy is to achieve efficient, tissue-specific targeting of drugs to cancer cells. However, most anticancer agents act on healthy and malignant tissue alike, potentially resulting in side effects to healthy tissue. This has motivated the development of treatment strategies that are cancer-cell specific; one approach uses biomimetic polymer vesicles (BPV) to deliver chemotherapeutic drugs into cells before releasing them. BPVs are synthetic membrane enclosed, nanometre-sized structures, and provide ideal drug delivery vectors because specific targeting to cancer cells can be achieved by coating with tumourspecific molecules. We present several mathematical models covering a wide range of length-scales pertinent to BPV-mediated delivery protocols and focus on capturing the in vivo environment by evaluating the impact of the underlying vascular structure upon the governing transport mechanisms. Firstly, we present models of specific binding of BPVs to cancer cells. Subsequently we examine the implications of these model outputs in the contexts of both discrete capillary architectures and higher level homogenized-models that track blood and BPV transport at the tissue scale (both intra- and extra-tumorally). Numerical solutions are discussed, and recommendations are presented on that optimal integration of the models to generate quantitative predictions associated with BPV treatment efficacy.en_US
dc.publisherBrunel Universityen_US
dc.subjectBiomimetic polymer vesiclesen_US
dc.subjectMathematical modelingen_US
dc.titleMathematical modelling of nanoparticle delivery to vascular tumoursen_US
dc.typeConference Paperen_US
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:
File Description SizeFormat 
MNF2009.pdf1.58 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.