Please use this identifier to cite or link to this item:
Title: The hybrid grid implemented DSMC method used in 2D triangular micro cavity flows
Authors: Şengil, N
3rd Micro and Nano Flows Conference (MNF2011)
Keywords: Triangular lid-driven micro cavity flow;DSMC;Hybrid grids;MEMS
Issue Date: 2011
Publisher: Brunel University
Citation: 3rd Micro and Nano Flows Conference, Thessaloniki, Greece, 22-24 August 2011
Abstract: In this study a new hybrid grid is implemented in a 2D DSMC solver to be used in 2D triangular micro cavity flows. Currently DSMC is the prominent method to analyze micro scale gas flows which are rarefied. Because of the computational cost, DSMC solvers are generally used in rarefied gas conditions in which continuum based solvers are useless. If the efficiency of DSMC solvers is improved, the application range of these solvers can be increased further where the continuum based solvers dominate. Indexing the particles according to their cells is one of the main steps in the DSMC method. Either the particles are traced cell-by-cell along their trajectories or coordinate transformation techniques are used in this step. The first option requires complex trigonometric operations and search algorithms which are computationally expensive. But it can be used in both structured and unstructured grids. Although the second option is computationally more efficient, it demands specially tailored structured grids which are more geometry dependent compared to the unstructured grids. Here it is shown that a novel hybrid grid structure can be used successfully in 2D DSMC solver to analyze triangular shaped lid-driven micro cavity flows. Hybrid grids used in this study are much less dependent of the geometry like unstructured grids. Additionally, hybrid grids like structured grids facilitate coordinate transformation techniques in order to increase the efficiency of the particle indexing step in the DSMC method.
Description: This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.
ISBN: 978-1-902316-98-7
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:
File Description SizeFormat 
MNF2011.pdf291.67 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.