Please use this identifier to cite or link to this item: http://buratest.brunel.ac.uk/handle/2438/5740
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmad, M-
dc.contributor.authorNolde, E-
dc.contributor.authorPichugin, AV-
dc.date.accessioned2011-08-03T09:14:02Z-
dc.date.available2011-08-03T09:14:02Z-
dc.date.issued2011-
dc.identifier.citationZeitschrift für Angewandte Mathematik und Physik (ZAMP) 62(1): 173 - 181, Feb 2011en_US
dc.identifier.issn0044-2275-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/5740-
dc.identifier.urihttp://www.springerlink.com/content/h611157316792244/en
dc.descriptionThe official published version can be obtained from the link below.en_US
dc.description.abstractAn explicit asymptotic model for transient Love waves is derived from the exact equations of anti-plane elasticity. The perturbation procedure relies upon the slow decay of low-frequency Love waves to approximate the displacement field in the substrate by a power series in the depth coordinate. When appropriate decay conditions are imposed on the series, one obtains a model equation governing the displacement at the interface between the coating and the substrate. Unusually, the model equation contains a term with a pseudo-differential operator. This result is confirmed and interpreted by analysing the exact solution obtained by integral transforms. The performance of the derived model is illustrated by numerical examples.en_US
dc.description.sponsorshipThis work is sponsored by the grant from Higher Education of Pakistan and by the Brunel University’s “BRIEF” research award.en_US
dc.languageEN-
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.subjectAsymptoticsen_US
dc.subjectLong waveen_US
dc.subjectCoatingen_US
dc.subjectLove wavesen_US
dc.titleExplicit asymptotic modelling of transient Love waves propagated along a thin coatingen_US
dc.typeResearch Paperen_US
dc.identifier.doihttp://dx.doi.org/10.1007/s00033-010-0095-y-
pubs.organisational-group/Brunel-
pubs.organisational-group/Brunel/Brunel (Active)-
pubs.organisational-group/Brunel/Brunel (Active)/School of Info. Systems, Comp & Maths-
pubs.organisational-group/Brunel/Research Centres-
pubs.organisational-group/Brunel/Research Centres/BICOM-
pubs.organisational-group/Brunel/School of Information Systems, Computing and Mathematics-
pubs.organisational-group/Brunel/School of Information Systems, Computing and Mathematics/BICOM-
pubs.organisational-group/Brunel-
pubs.organisational-group/Brunel/Brunel (Active)-
pubs.organisational-group/Brunel/Brunel (Active)/School of Info. Systems, Comp & Maths-
pubs.organisational-group/Brunel/Research Centres-
pubs.organisational-group/Brunel/Research Centres/BICOM-
pubs.organisational-group/Brunel/School of Information Systems, Computing and Mathematics-
pubs.organisational-group/Brunel/School of Information Systems, Computing and Mathematics/BICOM-
Appears in Collections:Dept of Mathematics Research Papers
Mathematical Sciences

Files in This Item:
File Description SizeFormat 
Fulltext.pdf157.49 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.