Please use this identifier to cite or link to this item: http://buratest.brunel.ac.uk/handle/2438/3658
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkemann, G-
dc.contributor.authorBittner, E-
dc.contributor.authorPhillips, MJ-
dc.contributor.authorShifrin, L-
dc.coverage.spatial4en
dc.date.accessioned2009-09-28T12:17:12Z-
dc.date.available2009-09-28T12:17:12Z-
dc.date.issued2009-
dc.identifier.citationPhysical Review E. 80: 065201(R)en
dc.identifier.issn1539-3755-
dc.identifier.urihttp://bura.brunel.ac.uk/handle/2438/3658-
dc.identifier.urihttp://link.aps.org/doi/10.1103/PhysRevE.80.065201en
dc.description.abstractWe use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral Random Matrix Theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large-N limit we find an excellent agreement, valid for a small number of exact zero-eigenvalues. New compact expressions are derived for real eigenvalues in the orthogonal and symplectic classes, and at intermediate non-Hermiticity for the unitary and symplectic classes. Such individual Dirac eigenvalue distributions are a useful tool in Lattice Gauge Theory and we illustrate this by showing that our new results can describe data from two-colour QCD simulations with chemical potential in the symplectic class.en
dc.format.extent1264633 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherAmerican physical societyen
dc.subjectRandom matrix theoryen
dc.subjectLattice gauge theoryen
dc.titleWigner surmise for Hermitian and non-Hermitian Chiral random matricesen
dc.typeResearch Paperen
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevE.80.065201-
Appears in Collections:Mathematical Physics
Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf1.23 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.