Please use this identifier to cite or link to this item: http://buratest.brunel.ac.uk/handle/2438/14202
Title: A Resilient Approach to Distributed Filter Design for Time-Varying Systems under Stochastic Nonlinearities and Sensor Degradation
Authors: Liu, Q
Wang, Z
He, X
Ghinea, G
Alsaadi, FE
Keywords: Resilient filter;Wireless sensor networks;Distributed filtering;Stochastic nonlinearity;Sensor degradation
Issue Date: 2017
Publisher: IEEE
Citation: IEEE Transactions on Signal Processing, 65 (5): pp. 1300 - 1309, (2017)
Abstract: This paper is concerned with the distributed filtering problem for a class of discrete time-varying systems with stochastic nonlinearities and sensor degradation over a finite horizon. A two-step distributed filter algorithm is proposed where the sensor nodes collaboratively estimate the states of the plant by exploiting the information from both the local and neighboring nodes. The goal of this paper is to design the distributed filters over a wireless sensor network subject to given sporadic communication topology. Moreover, a resilient operation is guaranteed to suppress random perturbations on the actually implemented filter gains. An upper bound is first derived for the filtering error covariance by utilizing an inductive method and such an upper bound is subsequently minimized via iteratively solving a quadratic optimization problem. To account for the topological information of the sensor networks, a novel matrix simplification technique is utilized to preserve the sparsity of the gain matrices in accordance with the given topology and the analytical parameterization is obtained for the gain matrices of the desired sub-optimal filter. Furthermore, a sufficient condition is established to guarantee the mean-square boundedness of the estimation errors. Numerical simulation is carried out to verify the effectiveness of the proposed filtering algorithm.
URI: http://bura.brunel.ac.uk/handle/2438/14202
DOI: http://dx.doi.org/10.1109/TSP.2016.2634541
ISSN: 1053-587X
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf302.07 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.