Please use this identifier to cite or link to this item:
Title: Lessons learnt from mining meter data of residential consumers
Authors: Blazakis, K
Davarzani, S
Stavrakakis, G
Pisica, I
Keywords: power theft;Smart metering;Data mining;Non-technical losses;Load profile;Electric load clustering
Issue Date: 2016
Citation: Periodica Polytechnica, Electrical Engineering, 60 (4): pp. 266 - 272, (2016)
Abstract: Tracking end-users' usage patterns can enable more accurate demand forecasting and the automation of demand response execution. Accordingly, more advanced applications, such as electricity market design, integration of distributed generation and theft detection can be developed. By employing data mining techniques on smart meter recordings, the suppliers can efficiently investigate the load patterns of consumers. This paper presents applications where data mining of energy usage can derive useful information. Higher demands, on one side, and the energy price increase on the other side, have caused serious issues with regards to electricity theft, especially among developing countries. This phenomenon leads to considerable operational losses within the electrical network. In order to identify illegal residential consumers, a new method of analysing and identifying electricity consumption patterns of consumers is proposed in this paper. Moreover, the importance of data mining for analysing the consumer's usage curves was investigated. This helps to determine the behaviour of end-users for demand response purposes and improve the reliability and security of the electricity network. Clustering load profiles for large scale energy datasets are discussed in detail.
ISSN: 0324-6000
Appears in Collections:Dept of Electronic and Computer Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf2.08 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.