Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMathavan, S-
dc.contributor.authorKumar, A-
dc.contributor.authorKamal, K-
dc.contributor.authorNieminen, M-
dc.contributor.authorShah, H-
dc.contributor.authorRahman, M-
dc.identifier.citationJournal of Electronic Imaging, 25(5): Article No. 053010, (2016)en_US
dc.description.abstractThousands of pavement images are collected by road authorities daily for condition monitoring surveys. These images typically have intensity variations and texture non-uniformities making their segmentation challenging. The automated segmentation of such pavement images is crucial for accurate, thorough and expedited health monitoring of roads. In the pavement monitoring area, well known texture descriptors such as gray-level co-occurrence matrices and local binary patterns are often used for surface segmentation and identification. These, despite being the established methods for texture discrimination, are inherently slow. This work evaluates Laws texture energy measures as a viable alternative for pavement images for the first time. k-means clustering is used to partition the feature space, limiting the human subjectivity in the process. Data classification, hence image segmentation, is performed by the k-nearest neighbor method. Laws texture energy masks are shown to perform well with resulting accuracy and precision values of more than 80%. The implementations of the algorithm, in both MATLAB and OpenCV/C++, are extensively compared against the state of the art for execution speed, clearly showing the advantages of the proposed method. Furthermore, the OpenCV based segmentation shows a 100% increase in processing speed when compared to the fastest algorithm available in literature.en_US
dc.subjectSurface inspectionen_US
dc.subjectCondition monitoringen_US
dc.subjectTexture analysisen_US
dc.subjectImage processingen_US
dc.titleFast Segmentation of Industrial Quality Pavement Images using Laws Texture Energy Measures and k-Means Clusteringen_US
dc.relation.isPartOfJournal of Electronic Imaging-
Appears in Collections:Dept of Mechanical Aerospace and Civil Engineering Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf753.35 kBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.