Please use this identifier to cite or link to this item:
Title: A numerical framework for sobolev metrics on the space of curves
Authors: Bauer, M
Bruveris, M
Harms, P
Møller-Andersen, J
Keywords: Shape analysis;Shape registration;Sobolev metric;Geodesics;Karcher mean;B-splines
Issue Date: 2016
Publisher: ArXiv
Citation: arXiv:1603.03480v2
Abstract: Statistical shape analysis can be done in a Riemannian framework by endowing the set of shapes with a Riemannian metric. Sobolev metrics of order two and higher on shape spaces of parametrized or unparametrized curves have several desirable properties not present in lower order metrics, but their discretization is still largely missing. In this paper, we present algorithms to numerically solve the geodesic initial and boundary value problems for these metrics. The combination of these algorithms enables one to compute Karcher means in a Riemannian gradient-based optimization scheme and perform principal component analysis and clustering. Our framework is sufficiently general to be applicable to a wide class of metrics. We demonstrate the effectiveness of our approach by analyzing a collection of shapes representing HeLa cell nuclei.
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf1.47 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.