Please use this identifier to cite or link to this item:
Title: H‐adaptive finite element solution of high Rayleigh number thermally driven cavity problem
Authors: Mayne, DA
Usmani, AS
Crapper, M
Issue Date: 2000
Citation: International Journal of Numerical Methods for Heat & Fluid Flow, 10, (6): pp. 598 - 615, (2000)
Abstract: An h‐adaptive finite element code for solving coupled Navier‐Stokes and energy equations is used to solve the thermally driven cavity problem. The buoyancy forces are represented using the Boussinesq approximation. The problem is characterised by very thin boundary layers at high values of Rayleigh number (>106). However, steady state solutions are achievable with adequate discretisation. This is where the auto‐adaptive finite element method provides a powerful means of achieving optimal solutions without having to pre‐define a mesh, which may be either inadequate or too expensive. Steady state and transient results are given for six different Rayleigh numbers in the range 103 to 108 for a Prandtl number of 0.71. The use of h‐adaptivity, based on a posteriori error estimation, is found to ensure a very accurate problem solution at a reasonable computational cost.
ISSN: 0961-5539
Appears in Collections:Dept of Mechanical Aerospace and Civil Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf2.03 MBUnknownView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.