Please use this identifier to cite or link to this item:
Title: Advanced signal processing techniques for multimodal ultrasonic guided wave response
Authors: Fateri, Sina
Advisors: Boulgouris, N
Balachandran, W
Keywords: Ultrasonics;Transducers;Signal processing;Fourier transform;Pulse compression
Issue Date: 2015
Publisher: Brunel University London
Abstract: Ultrasonic technology is commonly used in the eld of Non-Destructive Testing (NDT) of metal structures such as steel, aluminium, etc. Compared to ultrasonic bulk waves that travel in infinite media with no boundary influence, Ultrasonic Guided Waves (UGWs) require a structural boundary for propagation such that they can be used to inspect and monitor long elements of a structure from a single position. The greatest challenges for any UGW system are the plethora of wave modes arising from the geometry of the structural element which propagate with a range of frequency dependent velocities and the interpretation of these combined signals reflected by discontinuities in the structural element. In this thesis, a technique is developed which facilitates the measurement of Time of Arrival (ToA) and group velocity dispersion curves of wave modes for one dimensional structures as far as wave propagation is concerned. A second technique is also presented which employs the dispersion curves to deliver enhanced range measurements in complex multimodal UGW responses. Ultimately, the aforementioned techniques are used as a part of the analysis of previously unreported signals arising from interactions of UGWs with piezoelectric transducers. The first signal processing technique is presented which used a combination of frequency-sweep measurement, sampling rate conversion and the Fourier transform. The technique is applied to synthesized and experimental data in order to identify different wave modes in complex UGW signals. It is demonstrated that the technique has the capability to derive the ToA and group velocity dispersion curve of the wave modes of interest. The second signal processing technique uses broad band excitation, dispersion compensation and cross-correlation. The technique is applied to synthesized and experimental data in order to identify different wave modes in complex UGW signals. It is demonstrated that the technique noticeably improves the Signal to Noise Ratio (SNR) of the UGW response using a priori knowledge of the dispersion curve. It is also able to derive accurate quantitative information about the ToA and the propagation distance. During the development of the aforementioned signal processing techniques, some unwanted wave-packets are identified in the UGW responses which are found to be induced by the coupling of a shear mode piezoelectric transducer at the free edge of the waveguide. Accordingly, the effect of the force on the piezoelectric transducers and the corresponding reflections and mode conversions are studied experimentally. The aforementioned signal processing techniques are also employed as a part of the study. A Finite Element Analysis (FEA) procedure is also presented which can potentially improve the theoretical predictions and converge to results found in experimental routines. The approach enhances the con dence in the FEA models compared to traditional approaches. The outcome of the research conducted in this thesis paves the way to enhance the reliability of UGW inspections by utilizing the signal processing techniques and studying the multimodal responses.
Description: This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London
Appears in Collections:Electronic and Computer Engineering
Dept of Electronic and Computer Engineering Theses

Files in This Item:
File Description SizeFormat 
FulltextThesis.pdf8.87 MBAdobe PDFView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.