Please use this identifier to cite or link to this item:
Title: Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field
Authors: Lebon, GSB
Pericleous, K
Tzanakis, I
Eskin, DG
Keywords: Ultrasound;Cavitation;Modelling
Issue Date: 2015
Publisher: American Physical Society
Citation: Physical Review E, 92: 043004, (2015)
Abstract: Ultrasonic melt processing significantly improves the properties of metallic materials. However, this promising technology has not been successfully transferred to the industry because of difficulties in treating large volumes of melt. To circumvent these difficulties, a fundamental understanding of the efficiency of ultrasonic treatment of liquid metals is required. In this endeavor, the dynamics of two interacting hydrogen bubbles in liquid aluminum are studied to determine the effect of a strong acoustic field on their behavior. It is shown that coalescence readily occurs at low frequencies in the range of 16 to 20 kHz; forcing frequencies at these values are likely to promote degassing. Emitted acoustic pressures from relatively isolated bubbles that resonate with the driving frequency are in the megapascal range and these cavitation shock waves are presumed to promote grain refinement by disrupting the growth of the solidification front.
ISSN: 1063-651X
Appears in Collections:Brunel Centre for Advanced Solidification Technology (BCAST)

Files in This Item:
File Description SizeFormat 
Fulltext.pdf914.61 kBUnknownView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.