Please use this identifier to cite or link to this item:
Title: Improving Ant Colony Optimization Performance through Prediction of Best Termination Condition
Authors: Kalganova, T
Veluscek, M
Broomhead, P
Keywords: Ant Colony System (ACS);Optimization algorithm
Issue Date: 2015
Publisher: IEEE
Abstract: The Ant Colony System (ACS) is a well-known bio-inspired optimization algorithm which has been successfully applied to several NP-hard optimization problems, including transportation network optimization. This paper introduces a method to improve the computational time required by the algorithm in finding high quality solutions. The purpose of the method is to predict the best termination iteration for an unseen instance by analyzing the performance of the optimization process on solved instances. A fitness landscape analysis is used to understand the behavior of the optimizer on all given instances. A comprehensive set of features is presented to characterize instances of the transportation network optimization problem. This set of features is associated to the results of the fitness landscape analysis through a machine learning-based approach, so that the behavior of the optimization algorithm may be predicted before the optimization start and the termination iteration may be set accordingly. The proposed system has been tested on a real-world transportation network optimization problem and two randomly generated problems. The proposed method has drastically reduced the computational times required by the ACS in finding high quality solutions.
Appears in Collections:Dept of Electronic and Computer Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.docx202.71 kBUnknownView/Open

Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.