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Detection of Abnormal Situations and Energy Efficie@ontrolin
Heating Ventilation and Air Conditioning (HVAQystems

Abstract

This research is related to the control of energy consumption and efficiency in
building Heating Ventilation and Air Conditioning (HVAC) systems and is
primarily concerned v controlling the functiorof heating. The main goal of
thisthesis is to develop a control system that can achieve the following two main
control functionsa) detection of unexpected indoor conditions that may result in
unnecessary power consumption and b) energy efficiency control regarding
optimal balancing of vio parameters: the required energy consumption for
heating, versus thermal comfort of the occupants. Methods of both orientations
were developed in a multione space composed of nine zones where each zone
is equipped with a wireless node consisting of gerature and occupancy
sensors while all the scattered nodes together form a wireless sensor network
(WSN). The main methods of bottontrol functionsutilize the potential of the
deterministic subspace identification (SID) predictive model which provfdes
predicted temperature of the zones. In the main method for detecting unexpected
situations that can directly affect the thermal condition of the indoor space and
cause energy consumpti¢ebnormal situations}he predictive temperature from

the SID malel is compared with the real temperature and thus possible
temperature deviations that indicate unexpected situations are detected. The
method successfully detects two situations: tigh infiltration gain due to
unexpectedcold air intake from the exteal surroundings through potential
unforeseen openings (windows, exterior doors, opened ceilings etc) as thell as
high heat gain due tonset of fire. With the support of the statistical algorithm

for abrupt change detection, Cumulative Sum (CUSUM), dle¢gection of
temperature deviations accomplished with accuracy in a very short tiffibe
CUSUM algorithm is first evaluated at an initial approach to detect power

diversions due to the above situations caused by the aforementioned exogenous



factors. The predicted temperature of the zone from the SID model utilized
appropriately also by the main method of the seamndrol functionfor energy
efficiency control. The time needed for the temperature of a zone to reach the
thermal comfort zone threshofdom a low initial value is measured by the
predicted temperature evolution, and this measurement bases the logic of a
control criterion for applying proactive heating to the unoccupied zones or not.
Additional key points for the control criterion of timeethod is the occupation

time of the zones as well as the remaining time of the occupants in the occupied
zones. Two scenarios are examined: the first scenario with two adjacent zones
where the one is occupied and the other is not, and the second seetiado
multi-zone space where the occupants are moving through the zones in a cascade
mode. Gama and Pareto probability distributions modeled the occupation times
of the twoezone scenario while exponential distribution modeled the cascade
scenario as theest favorable case. The mobility of the occupants modeled with

a semiMarkov process and the method provides satisfactory and reasonable
results.At an initial approach the proactive heating of the zones is evaluated with

specific algorithms that handl@@ropriately the occupation time into the zones.
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Chapter 1

Introduction

1.1 Scope of the Thesis

The present researctork falls within the scopeof energy efficiency in
buildings, focusing onthe energyconsumptioncontrol in Heat Ventilation and

Air Conditioning (HVAC) Systems. Since HVAC systems represent worldwide
one of the most widespread energy supporting ways for buildings and homes, the
control of heir energy consumption remains nowadays one of the most important
issues for the total energy savinggcording to the U.S. Energy Information
Administration from 2013 through 2040 the electricity consumption in the
commercial and residential sectors|ve increasing by 0.5% and 0.8% per year
[1]. I twidely accepted through research studies that the main energy consumers
in the commercial and residential buildings are the HVAC systems, as well as the
lighting systemsCommercial and residential buildjsconsumed the 41% (or 40
quadrillion btu) of the total U.S. energy consumption in 2014. On the average of
about 43% of the energy consumptmfithesebuilding is due to HVAC systems

[2]. HVAC systems of the commercial and residential buildings consabuoat

57% of the required energy and they are wasting more than 20% of energy due to
various faults, insufficient control or improper positioning?2]. This
technological area includes a wide range of topicsand technologieswith
challengingresearchnterest,where severabaluableresearch studigsavebeen
elaborated and publish@mhda number of them is presented in Chapter 2.

Since the energy consumption control at all levels is nowadays a very important
issue, theenergy control in HVAC systemis a challenging direction as they
constitute a great energy consuménto this directionmuch of the global
research community has been shift€de objectiveof the researciworksis the
development of innovativeechnologiescapable tocontribute towards this

direction.
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As stated in Chapter 2 the initial form of the control mechanism of the HVAC
systems was centralized, i.e. a thermostat in a central point of the conditioned
area controlled the temperature of the whole space, even if that witie et

into rooms.This form of control resulted to a poor management of the energy
efficiency due to the issues of temperature variability between the rooms, as well
as the lack of occupancy in a number of the zones.

A more modern way of control is thaulti-zone model which is extensively
applied is space with many individual areas (rooms) i.e. large homes, and
buildings. The rationale of the mulizone control model is to provide an
independent control of the asonditioning system in all of the inddual areas
(zones). This concept has been the basis for the development of the demand
driven HVAC systems, which have already led to much more effective control,
with significant rates of reduction of unnecessary energy waste.

All methods of this thesisre based on the mulitbne control modebf nine
zones, utilizing the functionality ofa wireless sensor network (WSN), which
consists of wireless nodes placed in each zone containing temperature and
occupancy sensor3he nodes are programmable and cablemplement the
functionality of the proposed algorithms. The control of the energy consumption
concerns only the energy spent for heating and it's not related to any of the other
functions of the HVAC systems (cooling, humidifying efEhe dynamics othe
temperature of the zones are based on a lumped capacity model applied in
di screte time state space form. For the
applied which provides the variations of the temperature during the period of one
day. The comfat zone thresholds used for the energy efficiency control are
according to ASHRAE 55 standard. The method is adaptable to adsephe
threshold of the European standard EN15251 accordinGliartered Institution

of Building Services Engineer€[BSE).
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1.2 Aims and Objectives

The motivation of this research relies on the contribution to energy control of the
HVAC systems in buildings, which remains one of the most significant energy
consumers worldwide.

This research aims to the development of a heating energy control system in a
ninezoneHVAC space systemequipped with a WSN as described above. The
control system will be able to achieve two control functions. The first function is
the detection of unfeseeable indoor conditions that may directly affect the
normal operation of the heating, concerning the normal required energy spent
and this case is referred as *
provide an optimum possible balance betwtdentotal energy cost and the total
discomfort cost, by utilizing the occupancy information of the zones as well as
the occupation times into the zones.

The first objective for the detection of abnormal situations is the evaluation of
the statistical Cumlative Sum (CUSUM) algorithm as a change detection
mechanism for the detection of power deviations due to exogenous factors that
may affect the indoor temperatusich as high infiltration gaiand extra heat
gain.High infiltration gains may be caused bgenings that allow air entry with

lower temperature, while extra heat gains may be caused by fire events.

The second objective is the detection of the preservation of lower levels of
temperature due tthe above exogenous factoresulting to an aimlesenergy
waste.The third objective is an initial stage of the energy efficiency control and
constitutes the development of algorithms aiming to apply proactive heating to
the zones, which take into account the parameters of the occupancy information
of the zones in binary manner and the occupation time of the zones, with the task
to achieve an optimum energy consumption alongside with a satisfactory level of
t her mal comfort. The term “proactive
heating of a zone ictivated before the occupants enter a zone..

The fourth objective of the same control function which aims to contribute to the
overall energy efficiency is the decision based activation of the heating in the

unoccupied zones proactively, according to gedon that compares the risk of

17
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the energy cost versus the risk of the discomfort cost. This control function will
result to the reduction of the total energy consumption alongside with the
maintenance of the total thermal comfort to satisfactory levels.

The methodology for the achievement of the first objective is based on a lumped
capacity modehs a heat transfer dynamic madehich is run by the node of
each zone providing the ideal power profile. By comparing the ideal power
profile with the real controlled power produced by a PI controller the CUSUM
algorithm is expected to detect changes in the distribution of the poofde pr
when an extra heat gain or leakage will be applied in a zone.

The methodology for thachievemenbf the second objective is based on the
utilization of the deterministic SID predictive model, as the key mechanism for
the temperature predictiorf the zones. The detection mechanisgties on the
compaison of the predicted temperature with a real one and when the same
exogenous factors are applied, possible divergences of the predicted temperature
behaviour, are expected to be indicated. With skhpport of the CUSUM
algorithm the detection is expected to be accurate as it will d#tanges in the
mean of the rate change of the prediction error.

Two methods are proposed to satisfy the objectives of the second control
function concerning the energy efficiency.

For the achievement of the third objective as an initial stage for energy efficiency
control, three algorithms are developed. The algosthne aiming to a proactive
heating of the zones according to the occupation time into the zones, with the
logic that the longer is the mean of the occupation time into the zones the less is
the need of the proactive heating to the adjacent zones. Thethaigo are
compared with the fulproactive as well as tHell-reactive heating modes. The
term “reactive heating” states the fact
occupants enter theroarcd iwhi’l é etalt @ ntge rmm a
occupants enter one zone of the remme model the heating activates in all
zones. For the achievement of the fourth objective a novel technique is proposed
which aims to balance the comfort and energy costs in thezomeHVAC
system. Aiming to a proéige heating the proposed method periodically

computes the risk of activating the heater or not and decides in favor of the

18



action that produces the smaller risk. The computation of the risks relies on the
relative weights of the energy and discomfortts@® that the balance between

the total energy consumed and the total discomfort cost may be regulated. The
decision process itself relies on two kinds of predictions: a) tempettahee
predictions for the zones aemphadislison he
the zones’
also used to model the thermal dynamics of each zone. Two scenarios are
examined: a two zone scenario with only the one zone occupied and the cascade
scenario lmen occupants are moving through the zones following a certain path.
The method is expected to achieve an optimum balance between the

aforementioned costs.

1.3 Organization of the Thesis

The structure of the Thesis is as follows: Chapter 1, contains the introduction
including the scope, the aims and objectives and the organization of the Thesis.
Chapter 2 contains a concise review of the Heat Ventilation and Air
Conditioning (HVAC) systemgechnology, the state of the art of the HVAC
control systems, and related work of both the aforementioned directions. In
Chapter 3 the fundamental theoretical models are presented: thezomelti
model including the single zone model as a part of it, el6 as the weather
model for the outside temperature estimation. Chapter 4 presents the utilized
detection mechanism (CUSUSM) and the system predictive model (SID). In
Chapter 5, the two proposed methods for detection of abnormal situations are
analytically presented, while Chapter 6 contains the results of the methods.
Chapter 7 presents the two proposed methods for the energy efficiency control
and in Chapter 8 the results of the two methods are outlined. Finally, Chapter 9
initially presents the summargnd conclusions of the Thesis evaluating the
novelties and the outcomes of the research. Furthermore, directions of the future

work areoutlined

19
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Chapter 2

Review of the HVAC systems technology and
related work

2.1 Introduction

Heat ventilation and air conditioning (HVAC) systems have been established for
a long time, as one of the most widespread energy support ways, mainly in
homes, buildings, public transport vehicles and even spacecrafts. The design of
HVAC systems should itede all possible requirements and complexity, always
aiming to the best possible energy efficiency. Sophisticated control systems have
been developed and implemented contributing to a more efficient energy
consumption control of the HVAC systems, by takinto account parameters
such as occupancy and thermal comfort. These control systems have been
evolved through several valuable research works carried out, providing
significant results towards this direction. In this Chapter the evolution of the
HVAC systems is concisely presented in Section 2.2, the HVAC technology
features related to this work are presented in section 2.3, the state of the art of the
control systems technology is presented in Section 2.4, while the related work of

both directions of tis Thesis is presented in Sections 2.5 and 2.6.

2.2 The evolution of the HVAC systems

While with the use of fire, people were using heating since antiquity, the cooling
function was invented in 1851 by Dr John Gorrie and came into use in 1880 in
the USAmainly for industrial purposednitially the use of cooling applied to

preserve food and also for creating and transporting ice, while from the
beginning of the 20th century it began to be implemented for air conditioning in
building sites, starting with the building of the New Yorto& Exchange in

1902. Nowadays this technological sector is determined by the term "Heat

Ventilation and Air Conditioning Systems" (HVAC). Also the term "Air

20



Conditioning", while in the past meant primarily only the cooling operation, now
includes a set fofunctions that determine Temperature, Moisture in the air
(humidity), Supply of outside air for ventilation, Filtration of airborne particles
and Air movement in the occupied space

The evolution of the HVAC systems technology was based on the progeess a
technological achievements of several science and engineering sectors, such as
thermodynamics, fluid mechanics, electrical engineering, medicine, construction
and materials engineering and more.

The spreading and implementation of the HVAC systemsbleasn based on
technological breakthroughs such as cooling, (initially applied in food
preservation), computerization and networking applied for advanced control of
large installations of HVAC systems in buildings and medical discoveries such
as the effectsf passive smoking on humans, affecting the ventilation methods.
Despite the great progress and state of theaeatnologyof HVAC systems,
there are still areas of their scope that need optimizations and thysemhain
challengingresearch fieldsindicatively suchareas arethe quality ofthe indoor

air, the gasesemitted and the energy consumption contf8]. On the last

research are@nergy savingjocuseghe present researtfesis.

2.3 Technology features of the HVAC systems

2.3.1 The functionality of the Air-conditioning

The main processes that must coexist in order to achieve a full and adequate air
conditioning are seven: The heating, cooling, adding moisture (Humidifying), the
removal of moisture (Dehumidifying), the aleaning (Cleaning), the ventilation
(Ventilating) and the movement of air. A full @onditioning system must be

able to achieve proper control of temperature, humidity, external air supply, the
cleaning process and the air moving in the conditioned @reafunctions of the

air conditioning system can be summarized as follows [3]:
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1. Heating - the process of adding thermal energy (heat) in the space in
order to maintain the desired temperature.

2. Cooling - the process of removing heat from the space to reduce the
temperature or maintaining a temperature less than the outside.

3. Humidifying - adding water vapor to the air of a conditioned space in
order to increase or maintain the required air humidity.

4. Dehunidifying- the reverse process of humidifying. Removal of moisture

from the air of a conditioned space.

5. Cleaning - removing harmful particulate matter (dust, pollen, etc.) to
clean air space.

6. Ventilating - Air exchange between the outdoor and indoor- air
conditioned area for the renewal and freshness of indoor air; Naturally or
by means of holes created during installation, or mechanically by fans
who absorb outside air and the channel via the airways.

7. Air movement The process of circulation and mixing af between the
conditioned spaces to achieve proper ventilation and to facilitate heat

transfer between sites.

2.3.2 Muli-zoned HVAC systems

Traditional air conditioning systems were designed in such a way as to treat the
whole conditioned space as age entity, even though it has been partitioned
into smaller areas (rooms etc) as it usually done. Theoaiditioning system
wasbased on amir source for the wholareaof certain dimensionsyhere the
temperatureof the entire spacewas controlled byone thermostatSince the
building areashave adiversity in sizeand thermal loadshe previousdesign

logic of the HVAC systemswas ineffective and,furthermore,exhibited high
energyconsumption ratesThe need to amend these systems was imperative in
order to create HVAC systems that provide independent sources of heating or
cooling in each area and therefore independent control. Each separate area in this
type of HVAC systems is called "zone" and usually each zone has independent
air-conditioning requements. A zone is an independent part of a large building

space (a room or a hall) and can consist of a single open space or more than one
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premises with common agonditioning requirements. Based thre multizoning
and how the HVAC systems provideheaing and cooling, there are four
categories oHVAC systemswhich are [3]:

1. All-air systems

2. Air-andwater systems
3. All-water systems
4

. Unitary, refrigeratiorbased systems.

2.3.3 Thermal Comfort

A very important parameter included in the study and design -agbaulitioning
systems is the thermal comfort. The term 'thermal comfort' 'reflects the mental
state in which the human mind is satisfied with the thermal environment in which

it is located.It is veryimportant tomaintain the level ofhermal comforin air-
conditionedbuilding spaces anthat is a veryhallengingobjectivein the design

of HVAC systemsThermal comforin the human bodgan bemaintainedvhen

the heat, generatedue tometabolism,diffusesin the environment ando the
bodyis maintainedn thermal equilibrium [3]

Factors that directly influence the thermal comfort of the occupants are
individual (due to functions of the human body) and environmental. The first
category irmludes factors such as the metabolic rate and clothing insulation,
while in the second category are the air temperature, the operative temperature,
the air speed and the relative humidity. These factors will not be described in full
details throughout thit hesi s because they aren’t
methods in terms of thermal comfort. The proposed methods evaluate thermal
comfort based on the adaptability or accessibility model of the human body.

The adaptability of the human body at different temagures and the influence of

the ambient temperature on the indoor temperature are the basis of the adaptive
comfort model of ASHRAE (standard £810). This model incorporates the
results of a study of 160 buildings which showed that the occupantslamgsi

with natural ventilation accept a wider range of temperatures than those in sealed

air-conditioned buildings.

23



This is because the required temperature depends on the temperature conditions
of the external environment. The diagram of the adaptiveeh(®&tdy. 2.1) shows
the interior comfort temperature at prevailing external environment temperatures

and identifies the zones of 80% and 90% satisfaction.
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Figure 2.1 Acceptable operative temperature ranges for naturally conditioned spaces [4]

Based on the average of daily outdoor temperatures, the standard ASHRAE 55
2010 introduced the prevailing average outside temperature as an input variable
in the adaptive model. This average temperature was calculated at samples of 7
to 30 days prior to #hday in question. The adaptive model applies to rooms with
natural air conditioning where the outside temperature directly affects the
internal and therefore the comfort zone of the occupants.

Also, in order to apply the adaptive model there should baolng system in

the conditioned space and the occupants will be engaged in sedentary activities
with metabolic rates 1 1,3 met and an average temperature ¢f (50°F) to

33,5C (92,3F). Studies of de Dear and Brager showed that occupants have
greatertolerance to a wider range of temperatures when they are in places that
are airconditioned with natural air rather than in spaces with manual air
conditioning. This is due to adaptive processes by both physiology and by
behaviour. The thermal adjustmerdt@gories are three: theehavioual, the

physiological and the psychological.
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2.3.4 Energy consumption control in HYAC systems

In this research field, innovative methods is attempted to be proposed that will
contribute in the reduction of the tothergy consumption in new and existing
buildings. Two are the key parameters taken into account: the thermal comfort
and the air quality of the indoors environment. To this end, several valuable
research studiegSections 2.5& 2.6) propose innovative metlls by taking
seriously into account the overall costs, further to the aforementioned parameters.
Some of these studies are trying to exploit the existing infrastructure, such as Wi
Fi networks or mobile telephones etc. in their methods. Various disadiree
combined in this sector to generate innovative methods based on existing
mechanisms. A typical example is the utilization of a WSN consisting of wireless
nodes of temperature and occupancy sensors for controlling the use of the HVAC
system on demanddere a combination of two technological sectors is taking
place: the sector of the air conditioning systems and the sector of electronics and
computer networkdn this particular case of technological combination falls the
present research work. All tipgoposed control methods are based on the parallel
functionality of a WSN and a HVAC system. The WSN which consists of
wireless nodes installed in each zone provides information concerning
temperature measurements as well as occupancy detections. Thizatida is
utilized appropriately according to the specific proposed algorithm so that, the
desirable control function is providefilso the ASHRAE 90.22004 standard for
buildings and homes, developed by the American Society of Heating,
Refrigerating and\ir Conditioning (ASHRAE) and the llluminating Engineering
Society of North America (IESNA) associations, in order to cover the interaction
of electric lighting elements and air conditioning, since the first produces heat
energy.
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2.4 Review on the engy control systems of HVAC

The energy consumption control in buildings is an indispensable process with
high complexity. This complexity may be due to the way in which current
technology manages the issue of energy control, on the one hand frenethg
source (oil, electricity, RES) and on the other hand from the management of the
individual loads of energy consumption (heating, lighting etc).

The evolution of the research and technology over the years has brought
significant improvements in theeduction of total energy consumption in
buildings, since several innovative metho@ections 2.5& 2.6) have been
invented and implemented for this purpose. Modern building energy
management systems (BEMS), which form an integral part of intelligent
building, exploit the technology of wireless sensor networks, which is constantly
evolving.

Wireless sensor networks have widely replaced old fashioned wired control
systems or are used in addition, due to their flexibility and low costs of
installation, expagiing existing plants. Several building energy control
technologies, which have been implemented in previous decades, have a
distinctive name of identification. For example: Energy Management Systems
(EMS) or else Building Automated Systems (BAS) belongkbacthe 1970s,

and they were implemented aiming to improve energy efficiency by controlling
the total power of the heating and lighting systems. As the form of the building
units evolved in terms of size and overall design, from the next decade (1980s)
aneffort began to consolidate the various applied technologies and to form more
integrated systems for the energy control in buildings.

In the early 1990s, a new type of thermostats based on PID control and artificial
intelligence techniques was developeaut the control of temperature, while
towards the end of that decade, the technology of Predictive control began to be
applied which is still in place and research. This technology utilizes

environmental factors as input data for the control of HVAC systems
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2.4.1 Wireless Sensor Networks (WSNs) in HVAC energy control

Nowadays, a significant number of advanced automation and control systems
find application in buildings, which utilize the technology of wireless sensor
networks (WSNs). Such systems have bg®oposed and developed by
numerous very important research works and subsequently they entered the
commercial production for their implementation. Nevertheless, research
continues to evolve in the field of energy saving, aiming to improve areas with
exiging research challenges.

A general design framework of such energy control systems usually consists of
three layers (Figure 2.2).

The first | ayer namely the sensor | ayer
and itcontainsall the proper systems dmlevices for this purpose. Such systems
are typically sensor nodes that can communicate with each other or with a central
computing unit thus forming a sensor network (wireless or wired).

The second layer (the computation layer) is responsible for thectoh and
management of the information data and at this layer typically belong central
computing units such as servers.

The third layer is responsible for the regulation and control of the various
electrical devices and includes a set of intelligemtrad units such as smart
thermostats, smart outlets, relays and more.

The information provided from the sensor layer to the computation layer are
utilized by the second in an appropriate way and in combination with other types
of information such as statical or weather condition data, so that it would form
proper input data for more complex mechanisms. These mechanisms are usually
sophisticated algorithms derived from research studies, for handling various
energy consuming building systems (HVAC, ligigyj etc) in such a way as to
result in energy savings.

The logic of the proposed methodology of this thesis, as described in Chapter 3,
has been based on the above architecture of energy control systems.

The simulating algorithms are utilizing a wirelessde network of temperature

and occupancy sensors functioning appropriately for energy efficiency as well as

detection of possible aimless energy consumption. The mode of the WSN
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operation is either decentralized when there is communication among the nodes

or centralized when the nodes are communicating with a central computing unit.
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Figure 2.2Building Management System Architecture [5]

2.4.2 Autonomous Energy Control Systems

Autonomous energy control systems are do not require human intervé&umn.

systems are mainly used for the control of HVAC and lighting systems in

buildings because both of them belong to the category of the highest energy

consuming sectors. Autonomous systems utilize several types of sensors as

temperature, passive infrar@dIR) or carbon dioxide (C£ sensors, sensors for

the occupancy detection in various areas as well as light and sound control
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sensors, which inform the central server unit for monitoring the indoor space as
well as the external surroundings of the buitdi

The algorithmdetermines thectivation of variousactuatorsto implement the
required functionof the certain unitsFor example, the deactivation of the
heating system or the reduction of the temperature to a desired levé$@ldea
switching oroff of the lighting systemFor the HVYAC systems control, the
modernautonomous systenexecutealgorithmsthat exploitthe occupancy of

thezonesand the thermatomfort level agwo significant parameters faontrol

2.4.3 State of the art technologyfasensor units

The state of the art technologf HVAC systemscontrol has beerevolved

sufficiently to provideintegratedsensor system uniextensivelyprogrammable
with communicationcapabilities,which form thebasis forfurther development

andreseach of control mechanisms

2.4.3.1 Wireless temperature sensors and controllers

Nowadays, various types of sensor modules like temperature, humidity,
occupancy etc sensors, with wireless capability, are commercially available.
These units have becomeidely applied in homes, commercial buildings,
industrial sites, museums etc providing basic control functionality in usually
binary (on/off) mode like activating the lighting when occupancy is detected and
deactivating on departure of the occupants. liddial sensor devices would be
capable to provide a basic control with no special demands and they come under
a limited use in places where a more advanced control is not necessary.
Moreover, commercially available more integrated sensor units consist of a
number of different sensors and thus combing a number of detection functions
that provide a more accurate, demanding and effective control.

Such units constitute sophisticated controllers for HVAC systems because they
combine the operation of various serssin an integrated device and thus they
are capable to carry out a more comprehensive control compared with one type
of individual sensor. For example, one sensor detects the opening or closing of

the door, while another sensor (PIR sensor) detectsrédsenqce or absence of
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people as well as the entrance or the departure of the occupants from the zone.
By utilizing this information from the sensor unit as input, the controller executes
a program of an algorithm concerning occupied or unoccupied zor#ingnar
disabling the thermostat HVAC system.

The industry also manufactures controller systems with the capability of
learning. This type of controllers requires a time period of approximately one
week to learn how the occupancy schedule is formed dtinisgperiod. After

they have built a fixed occupancy schedule, they are able to proactively heat or
cool the zones, as well as trigger deactivation. In cases of inactivity (no
occupancy) they can either choose to set the target temperature to a coenfortabl
level or deactivate the heating / cooling system. This depends of the next
scheduled occupancy time. Moreover, they provide the adjustability service via
mobile phones though the appropriate software application. Finally, fully
programmable controller siems have been manufactured, which provide
network connectivity and capability to cooperate with other sensor units that can
be adapted with them [6,7,8,9].

2.4.3.2 Wireless occupancy sensors

In recent yearghe occupancysensor unithilave become a vergnportant toolin
research orenergy saving irHVAC systems sincethey greatly contributén
detectingoccupantsn different waysand this information iproperlyutilized by
various control mechanism&owadays,there are variou®ccupancysensor
technologies which are applied appropriatelywith significant detection
capabilities Occupancy sensor types regarding their technology that may be
utilized for the purposes of the proposed control techniques of this work are
described below.

For example, théurnstile sensors, although they accurately record the occupants
due to contact, they cannot be implemented to spaces of large commercial

buil dings where the occupants swar mi ng
a funnel situation, large accumutati of people in the traffic flow. Their
application may be limited to specific areas such as specific entrances where

there is a special requirement of occupants' detection or record.

30



Wi der I mpl ementation for occupandt s’ det
generally in large areas, use types of sensors that do not require human contact.

Such types are the infrared, ultrasonic, microwave sensors, as well as camcorders
equipped with special software for counting occupants, and pyroelectric infra red

(PIR) mdion sensors, which can also detect and count occupants in a particular

area in addition. PIR sensors are usually used in pairs so that they can also
determine the direction of the occupant
entering or exiting the doorf @ room. The implementation of PIR sensors may

be limited due to certain weaknesses: for example they cannot make effective
detection in large rooms and also, they cannot do effective accounting when
there’re many peopl e pasesaoafagensorhffOpbugh t h
Microwave sensors work similarly with the ultrasonic sensors and, their
functionality is based on the Doppler shift principle. A microwave sensor sends

high frequency microwave signals throughout the area, and receives their
reflected ptterns. If a reflected pattern is changing continuously then it is
interpreted as the existence of occupancy. Otherwise, if the reflected pattern is

the same for a preset time then the sensor interprets no occupancy. A microwave

sensor has high sensitiyias well as detection range, compared to other types of

sensors [11].

Video cameras can provide information regarding the number of occupants' as

well as the direction of their movement. The proper installation and configuration

are very important, fothe avoidance of significant errors, arising from three

main factors. First, the lighting conditions may affect the video sensors, since

low light levels can lead to single persons being counted multiple times. Also,

turning a light switch on or off mayigger a sensor count. Second, multiple

people crossing the viewing area concurrently, may be undercounted. Finally, the

video system may count several crossings, at times when occupants are

frequently standing unnecessarily within the recording area [12].
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2.5 Review of related work on thaletection ofabnormal
energy consumptionin HYAC systems

Several methods have been proposed for the detection of abnormal energy
consumption or fault detection diagnosis (FDD) in HVAC systems and they are
divided in two main categories: the statistical methods and the computational
approaches.

The statistical rathods are mainly based on fault detection algorithms that
compare data under normal operation conditions with the data under current
conditions in order to detect any abnorntshaviour The authors in [13]
proposed a method that is based on the principal component analysis (PCA)
detection of sensor faults in air handling units (AHU). Dhstatistic method is

used for the sensor fault detection, and furthermore with the use dj the
contribution plot, the faulty sensors can be isolated. In [14], a statistical based
method of detecting abnormal energy consumption in buildings is proposed,
including the detection of HVAC abnormalities causing outliers. In a first stage,
features like theaverage daily energy consumption or peak demands for a day
are determined using data like the total energy consumption of the building. Then
these features are sorted according to similar energy consumption and thus
groups of days with similar energy caomsption are formed. Thereafter, an
outlier identifier is applied to determine features of the same day type with
significant difference from the normal ones and if detected, a modifsedre is

used to determine the amount and direction of the variatiofl5], the authors
estimated the appropriate power consumption by approximating the minimum
cooling demands of a building (National Taiwan University) and comparing
them with the real cooling supply. The results showed a high discrepancy and the
authos proposed two types of statistical methods to reduce the energy
consumption: polynomial regression and feature based regression are the
methods used to model thehaviourin the building and a Hampel identifier is
applied to test the consistency of ttegad
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In the category of the computational approaches earlier works have introduced
computer simulations as embedded mechanisms within the control methods of
energy consumption of HYAC systems. In [16] the authors, based on the idea of
encapsulating simuii@mn programs within building energy management systems
(BEMSs), proposed a prototype simulatiassisted controller with an embedded
simulation program in order to provide real time control decisions. In the same
category also falls the work in [17], whem@ NSN was utilized for the abnormal
situation detection. Each node of the WSN, covering a single zone, act as a
controller (PI), tuning the heating supply to a predetermined temperature value.
A lumped capacity model was used to predict the hypothetorahal operation

and the CUSUM sequential algorithm detected possible divergences of the
energy consumption from the anticipated one. In [18] a method using a
multilevel fault detection diagnosis (FDD) algorithm is proposed, with an energy
description of dlunits in a HVAC and a spatial temporal partition strategy, as
the two main elements of the method. The energy performance signals of the
HVAC units are becoming the inputs to the FDD algorithm, and possible
hardware faults within the HVAC system are campt. The work in [19]
proposes a method that detects actuator faults in a HVAC system. It is a software
based on fault detection diagnosis mechanism with atiesed detection
approach. At the first tier, the method utilizes a quantitative rroaked
approach, which relies on a simple thermodynamic model and it does not require
full knowledge of the system model. At the second tier, a qualitative model
based approach is utilized which, based on the air temperature, provides a quick
decision whether an a@tor is working properly or not. In [20] a Model
Predictive Controller is presented which uses both weather forecasts as well as
the thermal model of a building in order to maintain indoor temperature
independent of the outdoor conditions. An accuratelehof the building was
indispensable and thus they created a simplified model of the crittall type ceiling
of radiant heating and applied a subspace identification algorithm giving the
appropriate inputs. In [21] a strategy is presented consisting adiagmes, the

FDD of HVAC systems and the sensors fault detection. In the first scheme the

indication of each system performance is taken by one or more performance
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indices (PIs) which are validated from the actual measurements by the use of
regression mode. The detection and diagnosis of faulty sensors are achieved
with the use of a PCA method. In [22] the authors have combined the benefits of
the model predictive control (MPC) technique as well as of building simulation
software such as TRNSYS, Energygl and so forth, in order to create a
physical model, as close as possible to a real building. To achieve this, they
applied a subspace identification method which is appropriate to identify a
multiple input multiple output (MIMO) system. In [23] the aoith have focused

on the preventive maintenance of the HVAC systems and they proposed a fault
detection method that combines the model FDD method and a support vector
machine classifier (SVM). The authors worked on the detection of components
sensitive to dults. Using computer simulations they investigated three major
faults such as recirculation damper stuck, the block of the cooling coil, and the
decreasing of the supply fan.

The Authors in [4Ppresented a diagnosis method of detecting abnormal energy
use i n buildings which is based on the hi
on generalized additive models (GAM). In this method the classification of the
energy use as normal is provided by the computation of the GAM model of the
main meter, and theomputation of the upper and lower bounds of an ARMA
model. If abnormality is detected for a period of time, the GAM models of all
submeters are computed as well as the ARMA models to determine if they show
abnormal behaviour, and the process terminates alé¢he abnormal submeters

are diagnosed. The method provided satisfactory results for detection abnormal
energy use in the HVAC system and the lighting systénemperature based
approach to detect abnormal building enecgypsumption is introduced ii®0]

which is called Days Exceeding Thresheltba (DETFToa). The method detects
small changes (increase or decrease) of the normal building energy consumption.
When a greater deviation than the standard between the measured and simulated
consumption is dected, then abnormal energy consumption is identified. This
deviation must be persisted for at least 20 consecutive days and ordered
according to outside air temperature. The BEOR method was conducted on a
dualduct VAV as well as a singlduct VAV HVAC systemln [51] a control
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oriented modeling methibis presentedor multi-zone buildings with mixed
mode cooling. The detailed prediction model of a rmote building is
established by a stapace representation with timarying system matrices.
The subspace identification algorithm is utilized to develop -datzen linear
time-invariant state space models, to represent the lineaivamant statespace

(LTV-SS) model which is considered as a true representation of a building.

2.6 Review of related work on the energy efficienayontrol in
HVAC systems

The necessity of demand driven HVAC systems for energy efficient solutions,
has orientated the researchers to the direction of occupancy based activated
systems. In mulkizone spaces the reactive and -pative activation of the
heating / cooling of the zones contributes to significant energy saving and
improves the thermal comfort for the occupants. Several research works with
valuable results in energy saving have utilizéé occupancy detection and
prediction, in order to control the HVAC system appropriately. For the
occupancy detection several types of sensors are used (i.e. PIRmMG®N)

while for the prediction, combinational systems are usually applied, utilizing
mathematical predictive models (etc Markov chains) alongside with detected real
data. The authors in [24] developed a heating control algorithm, which uses
occupancy sensing data as well as historical occupancy data, and it is called
"PreHeat". It is actally an occupancyased heating control system which reacts
when a space is occupied using an Occupied set point. In addition, when a space
is not occupied, it predicts the next occupancy of it, by matching historical data
with the occupancy data of therpent day. In [25] a controller system that
optimizes the HVAC system energy consumption for cooling is proposed, by
enabling the airflow only into the occupied zones. The control algorithm utilizes
the value of the “Tot al Oatian ofghe oucrgnt”  ( T O)
and adjacent room occupancies, as well as the Occupancy pattern of the room.
The proposed algorithm quantized the airflow in three levels (0, 0.5 & 1)

depending on the TO value. The authors in [26] proposed an automatic
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thermostat catmol system which is based on an occupancy prediction scheme,

that predicts the destination and arrival time of the occupants in the air
conditioned areas, in order to provide a comfortable environment. For the
occupants’ mobil ity pforenationc df ithe nmobileh e cel l
telephony system is utilized and the arrival time prediction is based on historical
patterns and route classification.

For the destination prediction of locations very close to each other-¢eitja

the timeaided ordeiMarkov predictor is used. The authors in [27] proposed a
closedloop system for optimally controlling HVAC systems in buildings, based

on actual occupancy levels named the Pesvicient Occupancyased Energy
Management System (POEM). In order to accurateg/tde c t occupant
transition, they deployed a wireless network comprising of two parts: the
occupancy estimation system (OPTNet) consisting of 22 camera nodes and a
passive infrared (PIR) sensors system (BONet). By fusing the sensing data from

the WSN (OPTNt & BONet) with the output of an occupancy transition model

in a particle filter, more accurate estimation of the current occupancy in each

room is achieved. Then, according to the current occupancy in each room and the
predicted one from the transitionoatel, a control schedule of the HVAC system

takes over the prReat of the areas to the target temperature. In [28] the authors

used real world data gathered from a wireless network of 16 smart cameras

called Smart Camera Occupancy Position EstimationeBy$SCOPES) and in

this way, they developed occupancy models. Three types of Markov Chain (MC)
occupancy models were tested: the Single MC, the Closest distance, and finally

the Blended (BMC).

The authors concluded that BMC is the most efficient and tieysémbodied it

as the occupancy prediction method in tfF
which is a temperature control strategy for HYAC systems. The authors in [29]

have developed an integrated system called SENTINEL that is a control system

for HVAC systems, utilizing occupancy information. For the occupancy

detection and localization, the system utilizes the existindg-Mietwork and the

clients smart phones. The occupancy | oc

access point (AP) communication withcal i ent ' s smar t phone,
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occupant’s phone sends packets to an AP
the AP. By classifying the building areas into two main categories, hamely the
personal and the shared spaces, the proposed mechanismesdtieatHVAC
system when an owner of a personal space (eg. office) has been detected within
an area where his/her office is located, or when occupants are detected within
shared spaces. In [30] an integrated heating and cooling control system of a
building is presented aiming to reduce energy consumption. The occupancy
behaviour prediction as well as the weather forecast, as inputs to a virtual
(software based) building model, determines the control of the HVAC system.
The occupancy detection technique m&B Gaussian Mixture Models (GMM)

for the categorization of selected features, yielding the highest information gain
according to the different number of occupants. This categorization was used for
observation to a Hidden Markov Model for the estimationth& number of
occupants. A Sernvlarkov model was developed based on patterns comprised
by sensory data of CO2, acoustics, motion and light changes, to estimate the
duration of occupants in the space. The work in [31] proposes a model predictive
control (MPC) technique aiming to reduce energy consumption in a HVAC
system while maintaining comfortable environment for the occupants. The
occupancy predictive model is based on the-stede Markov chain, with the
states modelling the occupied and occupied ¢mrdof the areas. The authors in

[32] propose a feedback control algorithm for a variable air volume (VAV)
HVAC system for full actuated (zones consisting of one room) and under
actuated (zones consisting of more than one room) zones. The proposed
algorithm is called MOBSua (Measured Occupa@ased Setback for under
actuated zones) and it utilizes real time occupancy data, through a WSN, for
optimum energy efficiency and thermal comfort of the occupants. Moreover, the
algorithm can be applied on convemi# control systems with no need of

occupancy information and it is scalable to arbitrary sized buildings.
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2.7 Summary

In this Chapter, a concise review of the current technology of the HVAC systems
took place initially, without any extensive reference to deeper elements of their
technology, as this is not relevant to the research scope of this thesis.
Subsequently, a restiv was made on the currently applied control systems of the
HVAC, which formed the basis of the proposed mechanisms of the Thesis. This
kind of control systems are based on the Wireless Sensor Networks (WSN)
utilizing the functionality of appropriate typed wireless sensors: temperature
and occupancy.

The state of the art technology temperature sensois on a satisfactory level
Smart thermostatsare an indicativesampleof the evolution of this kind of
sensors. Perhaps the most evolved type gbtbgrammable smart thermostats is

the one that provides a learning property. Its functionality is based on an
algorithm that provides the capability of recording the occupancy schedule of the
zones for a certain period of time, and based on that leaditigecactivation or
deactivation of the HVAC system. Further optimization of this type of
thermostats may be achieved by applying more sophisticated functionality
algorithms, utilizing their programmability.

The state of the art technology of the occupas®rysors is not capable to provide
accurate record of the occupants within a zone. The accurate information of the
occupants’ exact number could be possi bl
and further utilized by sophisticated HVAC control algorithrikis point may

be considered as an issue of optimization of this type of sensors.

Several valuable research studies related with the research directions of this
thesis have been published as they were presented in Chapter 2 (Sec. 2.5 & 2.6).
In the scope of detection of faults and anomalies, almost all referenced works are
focused on the detection of faults due to technical reasons or unit failures (i.e.
faulty thermostat). In the field of energy efficiency control, several works
propose methis for demand driven HVAC systems based on statistical data

concerning the occupancy of the zones, while a number of other works propose
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more computational methods that utilize mainly probabilistic mathematical
models. The difference and unity of the wofkhis thesis is distinguished by the

following points:

1 The detection of abnormal behaviour due to environmental situations in a
HVAC space constitutes a field which has not been extensively
investigated. Abnormal environmental situations i.e. coninc@d air
intake during winter period causing undesirable energy waste, as well as
fire events may be detected with the proposed methods, and hence play
an important role to the total energy consumption control.

1 The utilization of the Subspace Identifiicen (SID) as a temperature
predictive model. The significance and the potential of the model are
utilized in this work, on one extreme for the detection of abnormal
situations (2 method) and on the other extreme for the improvement of
the energy efficiecy (2 method). Significant role for the detection
mechanisms played the utilization of the statistical CUSUM algorithm for
accurate and reliable detection of abrupt changes of the power
consumption, as well as the temperature deviations from the atédip
ones.

1 Finally, the novel technique aiming to balance the comfort and energy
costs in a multzone system leading to a proactive action. The proposed
method periodically computes the risk of activating the heater or not and
decides in favor of the aonh that produces the smaller risk. The
computation of the risks relies on the relative weights of the energy and
discomfort costs so that the balance between the total energy consumed

and the total discomfort cost may be regulated.
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Chapter 3

Fundamental models utilized in the proposed
methods

3.1 Introduction

All methods of this Thesis have utilized the models presented in this chapter. The
first model is the multzone. As mentioned in Chapter 2 (Section 2.3.2) the most
predominant scenario of the HVAC system design is the-paumé one, where

each area (zondy independently heated or cooled and thus, more efficient
energy control may be provided. The second model is the weather model on
which the outside temperature has been based taking the temperature values
during the period of one day (24i8ection R presents the properties of the
theoretical multzone space modetontaining the characteristics and the
dynamics of the single zone model as a part of it. SectiBrp@sents the

weat her model (Wal ter’s model ) utsideat i s

temperature™Y involved in the proposed mechanisms.

3.2 The theoretical multizone space model

This section presents the theoretical muithe space model used for all the
involved simulations of the proposed methods. In section 3.2.8theof the
multi-zone space model is described, as far as the logic of the arrangement of the
zones is concerned. First, the singtse model is presented below, as an
individual part of the multzone model, including the involved equipment and

the themal dynamic model of the energy balance equations.
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3.2.1 The singlezone model
Isolating a single zone of the theoretical matthe space model its form is

depicted in Figure 3.1 and as it’s sho\

equipped with a weless node as well as a heater.

i T

I [l I, Al s

Figure 3.1 The sngle zone model consisting of a heat source and a wirelesg4%jde

This section presentdié dynamic model used for the heat propagatitm time

spaceof each zoneDue to the complexity of formulating the zone dynamic

model, a theoretical approach has been avoided. Specifically, theyxatate
variables which characterize Th¢ezone mo
eastroom wall temperature Y , the westroom wall temperature™Y , the

northrroom wall temperature”Y , the soutlroom temperature”Y ), and the

roof temperature”Y . In order to have a uniform temperature distribution, the

air in the zones is supposed to be fully misedthat the dynamics of the zone

can be expresdeby the lumped capacity modelhe following assumptions

should be made to form the energy balance equations of the zone: The North and
South walls of the zone shoul datureasre t he
well as the East and West walls must also have the same Efieittermore, a

effecton the temperature of the zone ias ground okachzone sothere is no

influence on the temperature change. Moreover, people, lights, and extreme

weather onditions are the uncontrolledputs[33].

According to these assumptions, the present zone model is characterized by six
state variabl es, "1 theeeastoonowall emperagurey er at ur e

the westroom wall temperaturéY hthe nortaroom wall temperaturéY  the

41



southroom wall temperaturéY

bal ance equati ons Ileehaviduare[33g one’ s

The parameters used in the previous equations are:

P

LAY , N on . , o

0 — Yo Y Y Yo Y Y Y O
Qo

’?’Y 6 uY uY ’F‘Ya uY uY rr] (\)

0 — Yo Y'Y Yo Y Y
6 — Yo Y Y Yo Y Y
6 — Yo Y Y Yo Y Y
6 — YO Y 'Y Yo Y Y

0 — YO Y Y Yo Y Y

_<=_<=_<=_<=_<=_<=_<=§:_<‘1_<‘1_<‘ZO=O=O=O=O=O=O=

: Area of the easitvest wall
DArea of the nortksouth wall

: Area of the roof
: Thermal capacity of theoom

: Thermal capacity of the eastest wall

: Thermal capacity of the northouth wall

: Thermal capacity of the roof

: Heat transfer coefficient of eastest walls

: Heat transfer coefficient of nortkhouth walls

: Heat transfer coefficient of roof

: Heat gain due to heating sources
: Temperature of the room

: Temperature of the easbom wall

: Temperature of the wesbom wall

: Temperature of the nortfoom wall

: Temperature of the soutioom wall
: Temperature of the roof

: Outside temperature

y

“y

and the roof temperaturér8The energy

temperat |

(3.1)
(3.2)
(3.3)
(3.4)
(3.5)

(3.6)

Equation (3.1) states that the rate change of energy in the zone is equal to the

difference between the energy transferred to the zone by either conduction or

convection and the energy removed from the zone. In equations-(32) the

rate change of emgy through walls is equal to the energy transferred through

walls due to temperature difference between indoor and outdd8Bhir
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However, because in this case the only energy type is the heat energy, equation
(3.1) expresses the fact that the difece between the heat transferred to the
zone and the heat removed from the zone is equal to the rate change of heat in
the zone. Similarly, equations (3.2§3.6) state that the heat transferred through
the walls due to difference of temperatures betwibe outside and inside air is
equal to rate change of heat through walls. In this simple model we neglected the
effects of moisture, doors, windows apieessure losses across the z[88. To

take into account the infiltration gain we should add tha ter

A a®Y Yo 3.7

to the right hand of equatioB.l). @ is the room volume and is an index that
indicates the air changes per hour. A conservative valae(tdfat we used in the
simulations) is ¥ which is a value used when there are conditions to prevent
infiltration (e.g. double glassing®#8]. Thus, the detection is examined with a
small amount of infiltration gainEquations 3.1) - (3.6) can be written

compactly using the state space model

%x(t) = AX(t) + Bu(t) (3.8
y(t) = Cx(t) (3.9
Where
wo YUY Y Y Y'Y (3.10)
60  YY Y'Y'Y RO (3.11)
0o Y (3.12)

The matrice® AT & are the following:

0O pmmTM (3.13)

43



: 1 1 1 8
% erA%w UnsAhs —Uu AR 0]
B= e Cew Cns CR A o)
&1 0
& 0 0 0 0
cCr - (3.19

1 1 1 1
- - - —2 72Un5 s —Uu ~
& Cr ( 2‘Jewpiew 2‘Jnsphs URAR) Cr ew'%w Cr A1 Cr RA? &
(’Y 'r o o~
2 —CYO 1 T T ~
cy - U
L c. P rNV
6 o ~ (3.15)
y —Y 0 Tt 1 no
Y - cizunsA\s v
(.,)’ 1 ns FY
1
—~ U L Tt _ U
& CR RA? C, RA?O,

The zone model parameter values are taken from [33], arstiler®arized in the
table 3.1.

Table 3.1
Simulation parameters [17]
0 i 0 dx 1 U3
0 dpa 0 dx m i3
0 i Y dgo Ta
6 DL o |Y DT
6 dx 1o U3 Y Dpw Td

3.22 TheProportional Integral (PI) controller

The Proportionalntegral (PI) controlleris s ed by each zone’ s nod
first method, to control the power sourdg0 8This controller type is a

combination of two types of controllers, the proportiofR) controller and the

Integral (I) controller connected in parallel. The relationship between thednput

and the error signdRin a PI controller is

60 000 — Q00O (3.16

44



The transfer function of a Pl controller is
O i 0 p — (3.17

wherev is proportional gain andy is the integral constant. The block diagram

of a PI controller is as followd=ig. 3.2)

Control output

Reference r Error e wy u oi Output
Q - > R
- I
Controller System
a)
- W PI controller
1 cl
o L"_|.___P controller
0
b) o

Figure 3.2a) Proportional- Integral(PI) controllerdiagram b) Error, ¢) Pl response

The Proportionat Integral (P1) controller used to control the power soufae

is of the following form

0i 0 — (3.19

The controller is driven by the error function

QY Y Y (3.19

where"Yis the target temperature valogthe zone
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The discrete version of the model with sampling pefigds given by the

following equations

W Ow 0660 (3.20
® 60 (3.2)
Where
0 Q (3.22
and
6 0 0 po (3.23

In this case the controller is expressed bydifference equation

B 0Q 0B 0 (3.29

3.2.3 The multi-zone model

The theoretical mukzone model consists of nine zones as depicted in figure 3.3.
In each single zone the factors described in the above section (3.2.1) have effect,
with the dimensions and surface areas of table I. The arrangement of the zones
was decidd to have the form depicted in Figure 3.3, so that there is symmetry as
far as the indoor temperatupehaviouris concerned, according to the influence

of the outside temperatui®& (i.e. zonesHll, 1-VII, Il -1X). All the peripheral

zones may be coitered as the peripheral frontage rooms of a real building,
while the internal zone (zone V) may be considered as an interior area like a
corridor. This symmetry facilitates the general evaluation of the simulation
results with respect to theehaviourof the thermal dynamic model. Also the
existence of the internal zone (zone V) is necessary, because the outside
temperature of it, is provided by the influence of the temperatures of the
surrounding zones (i.e. I, II, 11, IV, VI, VII, VI, IX).
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In simulaions the multizone model has been treated as a unique system with
forty two (42) states and nine (9) outputs which are the temperatures of the nine
zones. This consideration comes out from the fact that variables like the wall
temperatures are commontte individual systems (single zones). The 42 states
are provided from the following logic (Figure 3.4): nine (9) states are the heat
balance of the nine zones denoted wifj twenty four (24) states are the heat
balance of the walls denoted wi(d) and another nine (9) states are the heat
balance of the nine roofs denoted w(#). Adding all these states together, we
have 42 states.

As mentioned in the section above, each single zone is equipped with a wireless
node as a part of the whole WSN. Each one of the methods utilizes the WSN of
the ninezone model appropriately, according to the specific algorithm and each

utilization mode isanalytically described in each method.

ny
| AVARVI]

2 I A I V/ T B
m | vi | Ix

Figure 3.3The multizone model arrangemejdts]

/

Figure 3.4 Schematic depiction of the 42 states calculation
of the multizone model. 24 (X), M and 9 ¢ )

47



3.3 The weather model for the outdoor temperature estimation

In Figure 3.5 7Y denotes the outside temperature which is assummed to be
uniform with no loss of generality. For simulation purposes daily outside
temperature variations are obta@ d usi ng Wa l]t This snbdel mo d e | [

provides the “average unit curve” given |

O 'Q ™o (ooY TCPpMW vugp Troip xopw (3.25)

Where® "Q is the unit ordinate at tim®& (Local Apparent Time, LAT)) is
angular measure of the time of d&(LAT), 1 6 o ¢ fid6 p v8dsing

this formula along with

O —— (3.26)

0

Temperatare °C (1o )

0 S ] 15 20 25

Time of day (W)

Figure 35 Empirical estimation ofY [17]

the screen temperaturey at time "Qis estimated.”Y is the maximum
temperature}Y is the minimum temperature of the day aidis the mean of
the 24 hourly temperatures approximated by the daily mean temperature plus a
correction factor of Tm&tuv tY Y &gor example if"Y pu3
Y ¢ 3 and”Y x 3 the daily variations of temperature of Figurd 8re

obtained, which shows that temperature is highest at2@Dpm[17].
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3.4 Summary

In this chapter the fundamental theoretical models utilized by all the proposed
methods wergresented. As a muione space model, a model of nine zones
with the depicted arrangement (Fig. 3.2) was utilized for all the simulated
methods (algorithms). The singtene model, as a part of the "nin@ene" one,

was subsequently presented includihg installed equipment (wireless node &
heater) as well as the dynamic model for the heat propagation into the single
zone. This dynamic model of the single zone was expressed with the lumped
capacity model, in order to achieve a uniform temperaturghdison where the

air in each zone was supposed to be fully mixed. The model in the continuous
time form, consists of six energy balance differential equations-(3.8), which
expressed into the discrete time stgpace form in order to be processettie
computer simulation platform.

The arrangement of the nizene model was presented which is based on the
symmetry of the zones as far as the behaviour of the temperature is concerned,
according to the influence of the outside temperatdras wel as the existence

of frontage and internal zones. Moreover, because thezoime model has been
considered as a single model of forty two states, the way of this calculation has
been described.

Finally, a model was presented on which the outside tetuyperdY estimation

during the day period was based, in order to be provided an outside temperature
behaviour as natur al as possible. This w

the temperature behaviour of it was depicted in Figure 3.5.
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Chapter 4

Detection mechanism(CUSUM algorithm)and
system predictive mode[SID)

4.1 Introduction

In this Chapter the change detection mechanism as well as the System
Identification predictive model is presented. The change detection mechanism
whichi s t he Page’'s CUSUM algorithm is wutil
detection of abnormal situations in HVAC systems. The system identification
predictive model that is the SID model is utilized in the second of the two
detection methods and as will beentioned in Chapter 7, it is also utilized in the
second method for energy efficiency. In Section 4.2 a review in the change
detection method is presented, starting with an introduction to change detection
concept, continuing with a reference on the tawmisl concepts of the change
detection and finalizing with the presentation of the CUSUM algorithm as a
change detection mechanism. Section 4.3 contains an analytical presentation of
the Subspace Identification predictive model as a discrete system wdiaifi

mechanism.

4.2 Review otthe changedetectionmechanism
(CUSUM algorithm)

4.2.1 Introduction to change detection

The analysis of time series and identification was a very challenging research

area. The fundamental notion underlying this research field is that the properties

or parameters that describe the data either remain constant throughout the time

period or chaging very slowly. However, in many cases, problems arise that
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could be modeled using parametric models in which the parameters showed

abrupt changes in unknown times.

By the term abrupt <changes , changes
occur vey quickly, if not immediately, in relation to the measurement sampling

period. The detection of abrupt changes could be possible with the aid of
mechanisms which help a decision to be taken whether such a change in the
characteristics of the considered etij occurred. An abrupt change occurs at a

time instant where before and after thHie properties are constant. This
characteristic is fundamental, on one hand, for the statement of the mathematical
problem andon the other handor the change detecticalgorithms derivation

[34].

4.2.2 Basic tools and concepts of the change detection

In this work theCUSUM sequential detection algorithm is utilized which is
analytically preseted in the following section (43). In order to make the
algorithm undersindable, some basic tools and elements must be predensed.

o f al | |l et’ s consider a seqgquenwth of i nd
probability density) . The probability is depending on only one scalar
parameter— If a change occurs at the unknown tie the parameter—will

undergo a change so that if it was equattdefore change, it will be equal to

— — after change. The task now is to detect and estimate this change in the
parameter assuming thtite parameter before change-) is unknown. A very

important concept in Mathematical statistics is the logarithm of the likelthood

ratio and it is defined as

Yoo & e— (4.1)

This rato is based on the following key statistical property'Of and O
denote the expectations of the random variables of the probability distributions

0  andd ® respectively then,
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O i mandO L1 (4.2)

This means that if a change occurs in the parametichange in the sign (from
negative to positive or vieeersa) of the mean value of the {bigelihood ratio
will also occur{36].

4.2.3 The Cumdative Sum (CUSUM) Algorithm

The Cumulative sum algorithm (CUSUM), developed by E. S. Page of the
University of Cambridge in 1954CUSUM algorithm is a statistical analysis

mechanism for monitoring change detection in statistical quality control. A
fundament al el ement for t he—mferrechbyni sm i s
Page).—may be a parameter of the probability distribution i.e. the mean or

vari ance. <+asthe mearca adsiriltbigon; then CUSUM algorithm

is the actual method to determine changes—and thus, in the mean of the

distribution [35, 36].

The cumulative sum provides the sequential functionality characteristiveof t

algorithm. As a simple case to understand the cumulative sum, and how it is

cal cul at ed, | et ’ s ¢ onsidi daedrthe average of@ale s s wi t
samples| . Initially, the difference between the" lsample & and] s

calculated and theesult (positive or negative) is added to the difference between

the 2¢ sample @ and and so on, as follows:

® ]
O QO Yo ]
ny

DA A

YooY O 7 (4.3)

When the value ofYexceeds a certain threshold valQea change in value has
been found. Changes in the positive direction detect the formuba While

changes in the negative directiare detected by the formula (3.6
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Y o1 (4.4)
Y& oahiyY G (4.5)
Yo & Qafy O (4.6)

CUSUM algorithm is a sequential detectipnocess and it gives an optimal
solution to the following problem:

Assuming that @ ¢ is a discrete random signal with independent distributed
samples. Each sample follows a probability density function (PiPE)E h—.

The PDF depends on a deterisiit parameter—that maybe, for example, the
mean valué or the variance of @ & . An abrupt change of the signal might
have occurred at the time . At this time (¢ there is an instantaneous
modification of the value of the parameter so that— — before¢ and

— — after ¢ to the current sample. According to these assumptions the
observed signal PDF) from the first to the current sampl@ 1 0 & Q can

have two forms.

1. The form with no change hypothes{s will be given by:

~

0 ¢ B Nné¢h— 4.7

2. The form with one change hypothesis will be given by:

by b néh—>B né h— (4.8)

In the problem above, the values of the parameteefore — and after —

the abrupt change are supposed to be known as well as the PDF of each sample
N ¢ h—8The unknown factors to be determined are: a) the occurrence or not of
an abrupt change betweén mandé "Qand b) the value of the change time

€
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4.24 The intuitive derivation of the CUSUM algorithm

A typical behaviourof the loglikelihood ratio "Y is a negative drift before
change and a positive one after change.

The difference between the ldgelihood ratio value and its current minimum
value provides the information of the change. So, if at each time instant the

difference is compad to a threshol® the decision rule is then as follows:

Q Y «& (4.9)
Where
. N—
Y 1 [ aQ &———
n— w
(4.10)

is the emulativesum and

&  a@QE Y (4.11)

The stopping tim@ is

O AaQYQ Q aQIYY « Q (4.12)

Equation (4.1 states that the detection rule is the actual comparison between
the Cumulative sumiY and the adaptive threshotl "Q The factord
influences the threshold to be modifiedlore and keep complete memory of the
entire information contained inelpast observationsgp

The generallogic of the detection mechanisthat followed by the detection
methods of this works the following: As equation (4.3) statetie difference of

a parameter anda sample data is added to thelifferencebetween] and

the second sampté and this process continues until the sangple In the case

of this detectiomprocessthe parametér corresponds to the mean value of the

normal operation (null hypothesig) while the sampleso correspondsat the
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random variable® which specifiesthe differenceof the sequence of the
prediction errorQ 'O . The errorO specifies the differencbetween the

predicted valugand real ong According to the proposed metts) these values
may betemperaturezalues A new random variablé is produced which is the

sequential difference ofd 1) (for Q p). Thus the sum

Y B 0 (4.13)

constitutesthe cumulative sumlf the random variableo O O has a

density functiomQ® Mh, for ‘Q p where the mean is known or it may be

observed and, is a nuisance parameter and it is unknowhe using of

Combay’ s adaptation of nNui sancneis par amet
necessary as presented in the next Section.

4.25 Nuisance parameter adaptation on the CUSUM technique

Combay B7] utilized CUSUM algorithm taking into account a nuisance

parameter, . That is, when are independent random variables, exponentially

distributed with density functioifQ—h-R, , where—is the parameter of interest

and, is an unknown nuisance paramet&he statistics proposeldy Combayare

based onthe following elementsthe ef i ci ent score th¢ Rao’ s S
maxi mum | i kelihood estimator (Wald’s sta

Thus, the efficient score vector is defined as

~ ~

w -k B a & "Q0HR, 0 R (4.14)

Assuming thah  —h, is a point in an open subsetO s thenequation
(4.13) is valid under some regularity conditiotfsthe densityQO belongs to the
exponentialfamily, i.e. Gaussian, there exisés Wiener processy 0 if the
aboveregularity conditionshold under the null hypothesis (normal operation)

® O approximates
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© o -h o -k (4.15)

where, is the maximum likelihood estimation of and® * —h, is the
Fisher information matriXXVhen monitoring the mean- Tthe equation (4.15)
takes the fornji37]

QT —B 0 (4.16)

4.3 Deterministic Subspace Identification (SID)
predictive model

4.3.1 General system model
A dynamic modelof the form shownin Figure 4.1 can meeta multitude of

systemmodels such asndustrial,technica) biological, economical etc. In this
work theinterestis mainly directedon mathematical modelshich are usually
describedby differential equationswhen presenteth continues timeand with
differenceequationswhen presentedn discrete timeThe mathematicgbresent
the dynamicbehaviourof a systemas a functiorof time and they are used for

simulations, analysis, fault detection, system control etc.

0
) .
()
, —
o System
_—

Figure 4.1. Schematic diagram of a dynamic system with injgutsoutputswy and noisa) [39]
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4.3.2State space model
Consider the following discrete time model that is described by the difference

equations of the form

® 80 66 0 4.17)
@ 660 06 0 (4.18)

whered M a9 and w N g are the input and output measurement vectors
respectively at timéQ @ ™ a is the state vector containing the values of the
states of the process in a discrete tithe

The matrixo N 1 is the dynamical matrix andedcribes the dynamics of the
system.O N s Is the input matrix and it represents the linear transformation
of the deterministic inputs that influences the next statess  is the output
matrix which describes the transformation of the intermaesto the outside
world. ON 7 is the direct feedthrough term which is most often (0) in
continues time systems. In discrete time systems is not (0) due to sampling.

In Figure 4.2, a graphical representation of the system is shown

U l ) ':) l
) W (&)

—>» B | A " C | Ai—>

A 4
O

Figure 4.2 Graphical more detailed representation of the system [39]

where the vector input signas as well as the output signals are known
(could be measured) while the disturbancesandb are unknown.
The A symbol represents a delay. Accordi

model the problem of the system identification can be stated as follows:
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Given inputé and aitput & measurements@® plt8 d , how the system
matricesd 5 i HO and the ordet can be foundThe answer to this question is

presented in the following subsection.

4.3.3 Subspace Identification Analysis
One of the solutions to the above stapedblem is the subspace identification
process. I n order to express the probl e
consider the systemf the state space form of (4.17) and (4.iMere the only
known elements are: the given inputs, and the measured outpufs. The
statese of the system are unknown and hidden. The matid&dd Q'O and
the noisesl( , U ) are also unknown as well as the dimensions of the hidden
states w . The task i s t o e s bystema pammeterk e “bes
oM Q'O so that given the inputs , the outputso are observed. There is not
a unique solution to this problem and this can be shown as follows: from the
system described in4(17) and (4.1B without noise, suppose that theue
parameter® S Q'O and the initial staté are known
6 6 E o
W W 5

W 0 o 0

[Th [Tk
Th [Tk

5
° (4.19)

where matricesd &€ @0 TOP,0 € WD € WO TWWEO T
ando & op

If both sides will be multiplied with some arbitrary invertible matiithen:

Yoo ® E @ Ynoe 6 ® © E @

nm ow w E mog o0 06 E O
Yo ™Yo E "B Yo Y6 ® ® E o

6 & E 5 0 6 6 E o (420

where”Y ¢ w,&andO twat (Identity matrix)

and by multiplying (£0) with the identity matrix (21)
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o YTmnYY m
O 6 R (4.21)
Yd " E Yo v o Ynm ® ® If:_ W
w W E & O nm om 06 6 E O
Yo Yo E Yo Yoy "yg Yo Yo E Yo 42
w w E W 6"y ©O © 6 E o (4.2)

as it is shown from (4.32if the unknown axis (x) is multiplied by an unknown
matrix T, the same outputs from the same inputs will be precisely generated but
with differentd hd 5, andO parameter matrices.

The outputs w are a linear combination of the states and the inputsé

of the current time and all the previews times. If the observed oufputsould

have been projected in such a way that the influence of the irpuis
eliminated, then the generated system will be proportional to the hetiakesw.

This is the objective of the SID analysis. The SID analysis states that a system
could be identified by the projection of the measured data matrix onto a

matrix that is perpendicular to the space of the inpluts

4.3.31 Block Hankel matrices
Hankel matrices are matrices of a special form that they are used in SID process
and can be easily constructed from the input and output data. The input Hankel

matrices are defined as

E
v E oy
1 & €& E g phpas
7, 1 I; >
Ys K 1 = ::
£ A f ut u
e & & & "N
u E U
K S — (4.23)
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where

T

Similarly the output block Hankel matrices

E 2
v E Il
1 é é E é |’|ﬁpast
11 E e
E >
kll = 1
'||A’ . E . |’|~
1 € € E e ., nfutu
E
11 Il
u
K : _ (4.24)

The number of rows™Q is a used-defined index which it should at least be
larger than the largest observability index or else larger that the order of the
system to be identifiedQ ¢ .

The number of columnsQis typically equal td  ¢'Q p since all given data
samples are used.

The subscriptefic andé@®st and f or and

1 'Ys

“past’”
subscripts of’Ys , TYs denote the first and last element of the first
column of the block  Hankel matrix. The matri®ésand™Y (the past and the
future inputs respectively) are defined by splitﬁhrg in two equal parts of2

block rows. By shifting the border between past and future one row down, the
def i Thée

“del

matricesY andY ar e ned.

bl ock row” and ete one block row”

L0, 0,0 ,® are defined as

E
o E lApast
11 é é % é ]
“ E >
ws - 11 £ I,Ik S _ (425)
11 £ ] s
e ¢ £ & Hrutu
u E U
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E—- >
a4 E Y
11é é ,E g phpat
11 E: ) )
E 5
k : Tk — - (4.26
11 é e E é 1 :
E ~
¥ fpfutu
u U

The block Hankel matrices consisting of inputs and outputs are defined as

‘ s Yo 4.2
W g O, o W (4.27)

and as before
0 (4.28)
The deterministic state sequence matrix is
Ok ® ® E® w (4.29

Similarly and analogous to the past inputs/outputs, the pastand future @

State sequences are

Each row vector im'bg can be written as a linear function of the row vector in
@ and the row vectors ifiY. Therefore from(4.25) the row vectors Ino

exist in the subspace defined by the row vectof¥ aindcd .

d)S
LA 8o 08 o £
00, 00 0OQg oo 00 0Oq E
0@ 0060 06p 0@ 6@ 06060606066 0@ E
e é E
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4.3.32 Additional system matrices
According to the above matrixog ) and assuming that the paiifd to be

observable and the paibhd to be controllable, the extended observability

matrix @ can be defined as

A
11 ()
@ 1100 N 9g (4.30
I é n
wo U
(The subscript@enotes the number of block rows foy.

The controllable modes can be either stable or unstable and the @atan be

defined as a lower block Toeplitz matrix of the form

(0] Tt T E .
(o 2T 5 =
,, 00 @) T E m,
O 1000 06 O E TN 9 (43])
1 é é é E én
wo 6 600 6 00 6 E OU
and so the output matrigg can have the following form
6 o E
o 6 6 E
A D 0w w E o, ;. =z _
Ws W (@] 6 6 E (4.32
€ é E
From(4.27) the state sequence equations are defined as
W ow 060
W 0 @ o® 066
W 0 @ 000 O0® 00
@ b 6 606 b6 06060 EO80 (4.33

and from the above the reversed extended controllability mafrix is defined

as

<
(@}
(@]

E 666 N+ (4.34)

62



(the subscripflenotes the number of block columns)

and so the past and theure inputoutput equations can be written as

AR Y (4.35)
) 'Y (4.3
6 YTY (4.37

In equations (85), (4.36) and (437) the matricesy and"Yare known while the
rest of the matrices are unknown. The row vectorsoaxist in a subspace
defined by the row vectors 6% and therow vectors of®. If a subspace that is
perpendicular to the subspace definedYig found andowill be projected onto
this subspace, then the influence ™¥fand & will be eliminated and only the
influence of will remain.

Matrix & is a linear combination of the past inpOfsand outputsy as it is

shown from the equations 8%) and (437)

0w (4.38)
where
0 Y 000D (4.39
By substituting the equatidd.38), the equatior{4.36) can be written as

d e 07 (4.40)

If & will be projected onto the subspace which is perpendicular to the subspace

defined by’Y

OTY oo TY (441)
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OFTY OTY ‘0 oo (442

ard if in the above equation (442

OFY OofY o 0 anddw & then

0 (443
which is equal to
5
0 W0 oéo ® ® Eow
00
0w 0w E 06 0
 OO0Ow O0O0w E 00w,
160 w 00 @ E 60 w 1l
U &€ & & U

Here there is the important stage where a matfix has been produced, with
row vectors that exist in the subspace defined by the hidden state énatkizo

the row vectors of the matrix0 are linearly dependent, therefore the
dimensioning of matrix0 is equal to the dimensioning of matriéo which is
equal to the dimensions of vectarSo, although the value of the hidden states is

unknown, the dimensions of the vectois known.

4.3.33 Singular Value Dicomposition (SVD)
By performing the Singular Value Decomposition (SVD) of matrixhe hidden
statesv will be estimated.

(4.44)
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Where the columns 6¥ are the orthonormal eigenvectorsiial , the columns
of w are orthonormal eigenvectors@f 0, and"Yis a diagonal matrix containing

the square roots of eigenvalues frovor & in descending order. Thus:

o  YYo (4.45)

where
Yoo (4.46)
QW WA (447

The dimensions of matrixY are equal to the dimensions of mattx the
dimensions of matriXY are € w¢ whereg is the dimension of the vectarand
the dimension of each vectorof matrixw is & wp where¢ is the dimension
of vectora So, from equation 45, if we multiply twice with the square root of

Y as well as with an arbitrary negingular ¢ w ématrix“Yas below
N YYO O YYTYY YT o (4.48)
then the extended observation matbils identified as
oYYy (4.49)
and the state vectos is also identified as
& Y oY 7T o (4.50)

The number of singular values in equation (4.44) that are different from zero
determines the order of the system (4-17.18).

4.3.34 Determination of the system matricesh| hrand

One way for the determination of the matriéd®$ h5 and'O could be made with
the following method [39]:

First the obligie projections of equation (4.51) and (4.6fust be calculated
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0 ®Wf w (451)

0 wFf w & (452

next, the SVD of the weighted oblique projection of equatioB3J4must be

calculated, with the determination of theler by inspecting the values™
0w Y® (453
subsequently, the extended observation maindw must be determined as:
® o YY ., o (454)
then, the system statés and® must be also determined as:
® w and ® W (455

and finally the set ofquations of equation (4.bfhaybe solvedn a least square
senséor 6 MandO.

! (4.56)

4.4 Summary

Initially in this Chapter the logic of the sequential CUSUM detection algorithm
was presented, which has been utilized as the basic detection mechanism in the
proposed methods for the detection of abnormal situations in HVAC systems. As
pointed out, the CBUM detection algorithm is a statistical analysis mechanism
for monitoring change detection in statistical quality control. The fundamental
parameter of the algorithm sy which may be the mean or variance of a
probability distribution and if an abruphange occur at some unknown time

and cause changes-#the CUSUM algorithm is capable to immediately detect
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these change and possibly trigger an alarm. This mechanism utilized in both the
detection methods as the appropriate detection algoriththédabnormal power
consumption.

Subsequently, the Subspace Identification predictive model was analytically
presented which has been utilized as the temperature prediction model of the

zone' s temperature. The f undapmdictiona l prini
of the unknown statem of a state space model, if the inpdtsare given and

the outputsw are observed. In order to obtain the prediction of the unknown

statesw and result to the identification of the system, the identificatiothe
matricesd b iHhandO that are the system parameters is essential. This may be

achieved by the projection of the observed output datamatrix onto a matrix

that is perpendicular to the space of the inputs Then by performing the

singular value decomposition (SVD) process, the hidden statesvill be

identified.
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Chapter 5

Methodology for the detection of abnormal
situations in HVAC systems

5.1 Introduction

The first direction of this thesisoncerning thdirst control functionincludes the

methods for the detection of abnormal situations in HVAC systems which are
presented in this Chapter. The detected abnormal situation by the proposed
methods is the unexpected power consumption due to exogenous rddsons.

methods are distinguished as follows:

The first method is an initial approach proposing the first algorithm that utilizes a

WSN of nodes consisting of a temperature sensor as well as a proportional

integral (PI) controller for tuning. The method proasddetection of possible

divergences of the power consumption than the anticipated one, by applying the
CUSUM change detection algorithm.

The second method is also based on a WSN of temperature sensors, as well as a
centr al computer uhe iStD pradictive madel @as thet i | 1 z i |
temperature prediction mechanism for the
detection of a change in temperatbehaviouris achieved by the CUSUM test,

when a divergence between the predicted and the normal tempdmitargour

Is indicated.

5.2 Methodology Overview

The first control function is focusing on the detection of abnormal situations in
multi-zone HVAC systems and suggests two methods of detection. The term
“abnor mal Si tuat i on stihg to undesirabéerdivesgensest uat i o
from the normal operation of the HVAC system, concerning the power

consumption of the systerihe high infiltration gain causemexpectegower
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consumption and may be caused by sevwamdesirableopenings (i.e. windows,
doors), which allow the entry of possible cold air. Especially during the winter
period, the continuous entry of freezing air may induce astgm heating in an
air-conditioned area and thus, cause a significant energy wasteowardire

events are also included, where the temperature is rising in an unexpectedly fast
rate. Such situations could arise in any HVAC system and result to a
considerable amount of energy consumption when cooling, or the maintenance of
the high levelémperature on heating.

All methods of the firstcontrol functionare based on a nimone theoretical

model where in each zone a temperature lumped capacity dynamic model is
utilized to provide the temperatupehaviouras presented in Chapter 3.

The first approach utilizes a theoretical wireless sensor network (WSN) of nodes
on a decentralized control mode. Each node is installed in each zone of the multi
zone model and acts as a temperature sensor as well as a controller that tunes the
room’s teeton @ epredetenmimed value. The controller type is the
Proportional - Integral (Pl) as described in Chapter 3. Temperature
measurements of the surrounding nodes
to it and provide the temperature values external toabe. These values act as
inputs to the detection system which utilizes the above temperature dynamic
model to detect possible divergences from its normal operatidrthe CUSUM
sequential algorithm (Chapter 4) as the detection mechanism to isolatielgossi
divergences of the energy consumption from the anticipated ones.

The second method for the detection of abnormal situations is based on the SID
as described in Chapter 4, and uses a hybrid scheme of operation. The method
comprises two phases of opérai n . The first phase 1is
During the training phase the nodes transmit their readings to a central
computing unit, which organizes the data to irputiput form in order to be used

by the SID process which will be run in the node systéreach zone. As it is
extensively described in section (X) in this chapter, the SID model needs the
inputsd 0 and the outputsd 0 of a system, in order to be able to produce the

hidden stateso 0 8The temperature measurements of the adjacent zoresxch
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zone as well as the power prooffaréaeh of
zone's SID process while the output i
central computing unit identifies a linear state space system for each zone and its
parameters are communicated back to the wireless sensor node that monitors the

zone. At this point the first phase (training phase) has been completed and the

t he

S 1

second phase of the system starts. The

which operates in decentralized fashion. During this phase each node collects
the temperature measurements by its adjacent sensor nodes and the power

measur ement s of t he zone

predicts the zone’' s odllectep measutements. THea s e d

detection of possible deviations of the predicted values from the real ones is
achieved by applying a suitable detection algorithm. The CUSUM algorithm is
utilized to detect possible deviations from the normal operation anddband
phase is split into several cycles. As the CUSUM sequential detection algorithm
has been utilized to both detection methods, is presented in the following section.

5.3 Initial detectionapproach for abnormal power
consumption based on a WSN

As it has been already mentioned, each wireless node is capable to control a heat
source located into the zone using a Pl controller as mentioned in Chapter 3.
Moreover, the nodes have the functionality to detect abnoopatation, for
example higher power consumption than the anticipated one, due to open
windows during winter or lower power consumption due to the onset of a fire,
and signal it to an operation center. The detection mechanism relies on

knowledge of the ssorundi ng zones temperatures
covered zone. To be more specific, the assumption is made that each node runs a

model of the form
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©o OO oM 6 (5.1)
©d  "Omd (5.2
Bo OGO 7Y (5.3)

wherew 0 is the state vectoh 0 is a vector of external inputs) 0 is the

room temperatur€Yis the target room temperature, afpd is the ideal heat

gain tuned by the PI controller. This gain is a function of the &@mr wo

“Y Knowing the dynamics of the system, that is the functi@@& and 08, and

the external inputsd 0, which in our case are the temperatures of the
surrounding zones and possibly the outdoor temperature, the node is able to
specify the ideal power profilg 0 . During operation the node compares the real
controlled powern (t) with the hypotheticall 6 and detects possible deviations.

To this end let us consider a discrete time system Q, where”Y is the
sampling period) and the sequence of random varialidesi.e. a sequence of
independent measurements tbe heat gain. We assume thathas density
"Qamh, for Q pMBt p and density’Qamp h,  for 'Q 1, where
parametem is known andr} and, are generally unknown. The time index

T signals an event that changes the distribution of the measurements. In terms of
the proposed algorithn is the ideal mean heat gain as it is estimated by the

zone' s mo isahe vadamad of the estimation due to uncertainties of

6 0 hthe presnce of lamps or other heat sourcess a nuisance parameter and

it is generally unknown. The parametgrdenotes the mean temperature in case

of an abnormal situation, i.e. high heat leakages or high heat gains due to a fire,
and it is considered known. The parameteris the time index that a change of
densities occurs and sequential tests deal with this detection of change. Although,

N o andrn o are functions of time, we will apply the detection algorithm using

the random variableso @zn “Y. Thus, under normal operatio® has a
constant mean value equalttpwhereas under the alternative hypothesims a

nonzero unknown mean value.
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5.3.1 The utilization of the multrzone model

We consider an arrangement of rooms where each room (zone) is equipped with
a wireless sensor node that is capable to control a heat source located in the zone.
Each node transmits its room temperature in regular periods of time with

probabilityrpandthe e f or e t he i nformation about zon

“ ”

an epi demic f ashi omnvariecs momgaete nodd. Int he pr
power constrained environments this probability may depend on the battery
energy stock. A node with limited powsupply transmits with small probability

in order to elongate its life. In the proposed application it is more meaningful to
adjust the transmission probability depending on the difference of successive
measurements. Thus, a node that senses a noticedfdeente of its
measurements increasgsin order to communicate faster this change to its
neighbors. Moreover, we assume that nodes are aware of the network topology
(static routing) and they piggyback information in cases they act as relay nodes.
The ransmitted data are time stamped in order for the nodes to utilize updated

i nformation. Nodes that do not transmit
possibe transmissions by neighbor nodes. We may relax the power constraints of
the nodes since in iwdr environments nodes can be mounted close to power
supply sockets. Thus, the processing, transmission and reception power
consumption does not limit the operation of the nodes. We further assume that
each node is able to resolve n simultaneous trangmsssiith n being a variable

in the range [1, 4]. A value &f T suggests that each node has at most four
neighbors and a multiple access scheme with no collisions is involved i.e., a
TDMA approach with synchronized nodes. On the other extreme, the value o

¢ p suggests that nodes transmit independently and only in the case of no
collisions a packet is correctly received by a node. There is a tradeoff between p
and n. The largest the value of p the more transmissions occur and thus the more

susceptible is packet to collisions.
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5.3.2 The detection mechanism based on the CUSUM algorithm

One of the most promising algorithms to sequentially detect the change is the
CUSUM test [ 33] . Gombay [ 35] adapted Pes
detection in the presenad nuisance parameters. Gombay proposed statistics
based on the efficient score (Rao’s st:
estimator (Wald’s statistics), or on the

vector as defined in equation (3.13) will be

V,(ms) =& P,logl(Z,:0.5) v=(qo) (5.4)

i=1

As it can be proved, if the density f(.) belongs to the exponential family, i.e.
Gaussian, then if some regularity conditions hold under the null hypothesis
(normal operation), therexists a Wiener proce®#t) that approximates

W,=GY*(q,0) Xb.5,) (5.5)

where, is the maximum likelihood estimation pf ando rjh, is the Fisher
information matrix.

The test statistico in (5.5 can be used to check if a change in densities has
occurred at some time instaht  "Q Under the alternative hypothesis (abnormal
energy consumption) this statistic drifts f& t with the size of the drift
proportional to the rate at which the test statistic moves in the direction of the
alternative density. Moreover, in order to make decisions after n observations

have been obtained, we use the following result (Darling, Erdd¥ [3

QwnQ d"Qé(DG| AEQN AN QF A R
(5.6)

where
WO  catm 7 (5.7)
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and

W CHE® TWHENE B T E“Q (5.9
To makeuse of this result a false alarm rafis setf i.e."Q 18t rtfpwhere

p "Q QwnQ and the threshold is computed

QO CaEMXE T O aé T MEM Q cué XX
T®a € X XEQ T™aE"Q (5.9)

Then, the alternative hypothesis (abnormal operation) is supported by the data at
the first Qwhen

7o YQ (5.10

If no suchCexists for'Q ¢ the hypothesis of normal operation is not rejected.
For¢ o 1 tthat is 5 min with sampling period 1 sec) and the two indicative
values of Q 18t pand™Q ™A M PY'Q TP xand'Y'Q v care obtained
respectively.In what follows an assumption is made that all measurements
®, "Q p are independent normal distributed random variables. In this case the

test statistic in (18) is considerable simplified. Under this assumption
4, e 7 (519
and under the alternative hypothesis (abnormal operation)
amh e 7 (5.1

Let ® andr] be definedaso @ nandfin 1 N respectively. It is clear
that in normal operationéx 0 mh, , whereas under the alternative

hypothesigx 0 1/ h, . In this case the test statistic is

o J L E— (5.13)
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Under the alternative, the drift 6@ 7 ¢ after change is

~

07 . (5.14)

Figure5.1 shows the driftfot  ple o mhp vy p(blue),n =2
(green), andfy = 3 (red). As it is observed the greatiee excess power
difference§ 1 1 the largest the slope of the drift.
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Figure 5.1 Drift of test statistic for, :LS andn =1,2 and 317, 45]
The only parametareeded taun the detection algorithm i This parameter is
estimated by each node using the model described by equ&tibns(b.3). The
external input® 0 , which are the surrounding temperature values, are conveyed
to the node through the WSIDependingon the multiple access technique, a
node may not receive updated valuesbod due for example to transmission
collisions. In this case, the node runs the detection algorithm with the latest
received values ob 0. As it will be shown inChapter 6 this does not affect

much the detection process.
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5.4 The Subspace ldentificatiormethod for the detection of
abnormal power consumption

5.4.1 System modeling

5.4.1.1 Detection of abnormal systdmehaviour

As it has been already mentioned, we consider azone system with a WSN
deployed consisting of temperature sensor nodes. Each wireless node measures
the temperature of the zone and it covers and conveys this information to its
neighboring nodes. Adddnally, the nodes have the functionality to detect
abnormal operation, for example slower temperature rising than the anticipated
one due to open windows during winter, or high temperature values due to the
onset of a fire, and signal it to an operatiomtee The detection mechanism
relies on knowledge of the temperatures of the surrounding zones and the
dynamics of the covered zone. The dynamics of each zone are learned during a
training period using the subspace identification procedure presentedriaxthe
subsection.

In general, the assumption is made that each zone is represented by a discrete

model of the form

) OwPp h (5.15)
® O0P 5.16)

where® is the state vector at discrete tiffl0 is a vector of external inputs,

W is the predicted zone temperature and- are specific parameters to the
systemsOJand 0J respectively. Knowing the dynamics of the system and the
external input® , the node is able to predict the temperature of the @oBiEhe

inputso in this case are the temperatures of the surrounding zones, the outdoor
temperature and éh power of heaters located in the zone. Comparing the
predicted values to the actual ones, as measured by the temperature sensors,
possible changes in the dynamics of the system can be detected, which signal an

abnormal operation. Optimal detection theadgals with the problem of
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detection of changes in the distribution of meament data. Control charts [40]

and the CUSUM algorithm [35are some of the simplest and most applied
solutions. Alternatively, the subsystem model can be periodicaiigerdified

looking for possible changes in the parameter spade . However, such a
detection process is computationally demanding and overloads the wireless
nodes. Moreover, more data are needed to be processed to draw safe conclusions
and thus large delays are unavoidable. On the contrary CUSUM charts can detect
easilysmall systematic shifts but their response to large shifts is relatively slow.
For all these reasons, in this work the CUSUM technique is used as the basic
change detection algorithm since even small deviations from strict operating
requirements should letected. The detection process will be based on the rate

of variation of the prediction error between the real and the predicted
temperature. To this end the sequence of prediction efors® @ is

defined wherey denotes the predicted tenmptiure processand i s t he “real’
temperature process of the zone. The derivative of this discrete process is the

random variableo , where

O O © (5.17)

The assumption is made thé@t hawe densityQa M h, for Q pB T+ p

and densityQd M h, for Q p where the parametay is known (or it is
estimated) andi and, are generally unknown. The time indé&x signals an
event that changes the distribution of the measurements. In terms of the proposed
algorithm,r} is the mean of the rate of the prediction error in normal operation
and, is the variance of the rate due to uncertainties of the measurement
devices,, is a nuisance parameter and it is generally unknown. The parameter
denotes the mean of the rate of the prediction error in case of an abnormal
situation, and it is considered unknown. The paramieteithe time index when

a change of desities occurs and sequential tests deal with the detection of this
change. Althought] is in general a function of tim& the detection algorithm

will be applied using the random variablés & 1 . Thus, under normal

operation (null hypothés) 0 has a constant mean value equal to 0, whereas
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under the alternative hypothesis has a norzero unknown mean value

n N 1 .Note that the measurement noise is only due to the sensors and not
due to exogenous factors such as lamps, theepoe of people etc that may
influence the detection process. These sources of noise affect both the estimate of
r , the mean of the rate of the prediction error on normal operation, and the drift
of the test statistic (see below) so that one cannot siadevconclusions about an
abnormal situation. Nevertheless, in the simulation results presented in Chapter 6
an experiment with such noise processes modeled is included, primarily to
demonstrate the effectiveness of the SID method and to provide diss@ion

future research. The efficient score vector based on equation (5.4) is defined as

ok, B aé@mR R O AR (5.18)

and if the densityQO belongs to the exponential family, i.e. Gaussitiere

exist the Wiener process 0, and from(5.5) approximates
@ o nh o ih (5.19)

where ,, is the maximum likelihood estimation gfand® rh, is the Fisher
matrix. The test statistico in (5.19) can be used to check if a change in
densities has occurred at some time instant 'Q Under the alternative
hypothesis (abnormélehaviouy this statistic drifts fofQ 1 with the size of the

drift proportional to the rate at which the test statistic moves in the direction of
the alternative density. Moreover, in order to make decisionséafibservations
have been obtained, equation (5.6) is used wWith and® @ as in equations
(5.7) and(5.8) respectively. A false alarm rate is set"@= 0.001, where

P Q Qwn'Q and the threshold is computed by equation (5.9).

Then as in the initial approach in Section 5.3 equation (5.10), the alternative
hypothesis (abnormal operation) is supported by the data at thexfirstn

QD To  YQ (5.20)
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If no suchQexists forQ ¢ the hypothesis of normal operation is not rejected.
Again as in the initial approach, féor o 1 fthat is 5 min with samplingeriod

1 sec) and the two indicative values™® 18t pand’Q T8t iPY'Q 1 X
and”Y'Q uv& care obtained respectively

The assumption is made that all measurement§ pare independent random
variables. In this case the test statistic in (5.19) based on equation (5.13) takes the

form

o J L E— (5.21)

Under the alternative, the drift @ * ¢ after change is based on equation
(5.14)

07 - (5.22)

The driftsfor ph' o mm v, p(blue),l ¢ (green), and) o (red)
are as depicted in Figure 45].

5.4.1.2 Deterministic subspace identification

The deterministiSID modelhas been implemented in order to be achieved the
temperature prediction for each zone aft:
According to the SID analysis in Chapter 4 the temperature prediction has been
achieved as followsEach zone is treated garately and is represented by a

discrete time, linear, time invariant, state space mplations 4.17 and 4.18

That is,"OJ and"OJ are linear functions and for a specific zone we can write
W ow 0606 0O (5.23)
w Oow 06 U (5.24)

where is the zone temperature at tiri@2and is in g@neral anxdimensional
vector if & temperature sensors scattered in the zone have been deployed.

Assuming a uniform zone temperature only one sensor node is needed and thus
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@ becomes scalath represents the measurement noise due to imperfections
of the sensord is a vector oinput measurements and its dimensionality varies
from zone to zone. This vector contains the measurable output of sources that
i nfluence zone’' s temperature. Such sourc
the zone, thair temperature at various positgautside the zone etc. The vector

w is the state vector of the process at discrete fin@he states have a
conceptual relevance only and they are not assigned physical interpretation. Of
course a similarity transform can convert the states to gddysieaningful ones.

The unmeasurable vector signal represents noise due to the presence of
humans in the zone, switching lamps on and off € effects of state and
output noise are neglecteahd thus a deterministic identification problem is
obtained, which is the computation of the matriéés i and’O from the given
input-output data.Following the processand the derivation irChapter 4the

block Hankel matrices are defined

6 OE o
- 6 OE 0
Y Ys & & & (5.25)
6 E 6
6 6 E o
- ) 6 E o
Y Y & & & (5.26)
6 E 6

which represent the “past 'tothapresenttime “ f ut u
instant'QStacking Y on top of Y the block Hankel matrix is obtaindeq.
4.23)

Y : — (5.27)

Y : — (5.28)
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by movi ng t h eonestepabeactotint2 pdSimitady, the output
block Hankel matricegds & hohid Ad and the inpubutput data matrices

are definedeq. 427)

0 W 2 — (5.29)
and (eq. 428)

@ — (5.30)

The state sequence is defined as (eq. 29)
W=0 ®w 8w (5.31)

and t he “past’” and “f bt ur @fd Osthat e seq.!
respectively. With the state space model (), (4.18 the extended observability
matrix @ and thereversed extended controllability miatl/ are associated where
(eq. 430, 434)
5
y 00 i
W &060 &, Y o6 060 EOOGO (5.32)
E
00 O
The subspace identification method is based on determining the state sequence
@ and the extended observability matcixdirectly from the inpubutput data
6 , w ; then based on them, in a next step, extracting the madidd® andO.
To this end the oblique projection of the row space aflong the row space of

"Y on the row space ofo is defined(eq. 443)

0 AT OTY o TY o (5.33)

wheret denotes the MoorBenrose pseudaverse of a matrix, andf6 is a
shorthand for the projection of the row space of madiribonto the orthogonal

complement of the rowpace of the matrig, that is

81



076 'O 06 066 © (539

As it is proved in [19] the matrix is equal to the product of the extended
observabilitymat r i x and tveaor(égid3;, ur e” st at e

5 o (5.35)

Having the matrix 0 its singular value decomposition (SVD) is computed
(eq. 4449)
6 oYY Y9 vy (5.36)
m T ®

and the extended observation matbix and the state vectos are obtained
\ Ny " o e~ , X e
®w YY Y Y Yw oV (5.37)

where “Yis an&¢ €& arbitrary nomsingular matrix representing a similarity
transformation.
One method [3Pto extract the matrice® R and O uses in addition the

oblique projection
0 w7rT w ® © (5.38)

wherew is obtained fromw by deleting the lastirows @ p in our scale).

Similar to the previous derivation the equation is obtained

& ® (5.39)

and the matrice8 5 h5 and’O are obtained by solving (in a least square fashion)
the system

D) 6 & O
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5.4.2 The proposed Algorithm

The key ingredients in this proposed algorithm are the deterministic subspace
system identification and the CUSUM algorittas both presented in Chapter 4.

The algorithm includes two operation phases: the training phase and the
detection phaseDuring the first phasétraining) all the nodes in the structure
report their measurements to a central computing system. These measurements
consist of the temperature of the zone and the current power of a heater, if the
sensor node is in charge of a heated zone, or only the tempefdaheeensor

node monitors an area immaterial to the detection process but relevant to other
zones, i.e, the exterior of a building. The training phase should be performed
only once but under controlled conditions, for example no extra sources of
heating,closed windows etc. Moreover, the length of this period should be quite
large in order that several variations in the input signals to excite the modes of
the system are present. In the simulation part a training period of 24 h, that is
86400 samples witkampling period 1 sec are considered. After receiving all the
measurements, the central system arranges them toaofputt data for each
zone. For example, in the case of a zone named A, with neighbors zones named
B, C, D and the exterior to the buildirzone named E, then the temperature
values of zone A are considered the output of the system to be identified,
whereas the temperatures of the zones B, C, D and E as well as the power profile
of the heater of zone A are the input data for the system., Bhdaterministic
subspace identification process is run for each zone as described in the previous
subsection. The relevant matriog& i andO of the state space modef the
equations 4.1 and 4@f each zone are communicated back to the sens@ nod

that is responsible for monitoring the zone.
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Figure 5.2 Training phase steps of the algorithm

Figure5.2 depicts the flow diagram of tHeraining phasé After reception of

these matrices, the sensor node enters the detection phase. The detection phase is
split into cycles of possibly unequal lengths. In the beginning of each cycle the
valuen , that is the mean of the rate of the prediction error isnastid using a

few samples. For the simulation part short periods bfmin (60 samples) are

used to estimate the valug. Then, for the rest of the cycle the CUSUM

algorithm is run to detect possible deviations from the normal operation.
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Figure 5.3 Detection phase steps of the algorithm

The length of the detection interval is quite large, in the order of 1 hour, and it
should depend on the time of the day. During periods (of the day or night) with
small (large) expected changes of the exterior temperature, the detection interval
can be igreased (decreased).

Note that a positive drift of the test statistif 1) designates an abnormal
increase of temperature, that may be due to the onset of a fire, whereas a negative
drift of the test statisticy 1) designates leakage of heat, that rhaydue to

open windows during winter, or malfunctioning of the heater. The detection

phase flow diagram is depicted in Figure.5.3
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5.5 Summary

In the initial approach of detection of abnormal situations, an HVAC control
system based on the mutibne (ninezone) principle is proposed. The system
utilizes a WSN network of temperature sensors to control independently the
heating supply of each zonkloreover, thesystem is capable to detect abnormal
energy consumption that may be due to heat leakages or other events like fire. To
this end, the reference power consumption at each zone is estimated based on a
suitable zone lumped capacity model wittputs the surrounding temperatures
that are communicated to the node using the means of the WSN. The CUSUM
algorithm is used next to detect possible divergences of energy consumption
from the reference values.

The second proposed method for the deteatfombnormal behaviour in HVAC
systems is also based on the mmithe (ninezone) principle and utilizes
deterministic subspace identification to obtain state space system models that
will provide the reference temperatures for each zone. The methodtsafsis

two phases of operation: the training phase and the detection phase. During the
training phase the nodes of the WSN (installed in each zone) send their
temperature readings to a central computer unit in order to be arranged in the
input/output form a required from the SID model. After the SID is processed by
the central unit the parameter matriéd® 5 Q'O are communicated back to the
nodes of each zone where they are applied on the state space model to predict the
temperature behaviour. Théine algorithm enters to the detection phegere

the CUSUM algorithm is implemead to detect possible divergences of the rate

of change of the difference between the real angrbdictedvalues.
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Chapter 6

Results of the methods for theletection of
abnormal situations in HVAC systems

6.1 Introduction

This dapter contains the results of the methods presented in Chapter 5.
In Section 6.2he results of the first initial approach for detection of abnormal
situationsis presented with the results of the single zone simuldBabsection

6.21) and the results of the multbne simulatior{Subsection 6.2). In Section

6.3 the results of the second detection method based on the SID model are
presented including the resubf the training and the detection phases

6.2 Results of the initial detectionapproach based on a WSN

6.2.1 Single zone simulation results

First, a single zone system was simul ate
temperaturéy, as it is depicted in Figure 3(€hapter 3) The target temperature

is set to¢ B . A tuning technique, like the Ziegk®ichols method, is utilized to

determine the parameters of a Pl controller. The valués @nd0 that have

been used in the sirations were 100 and 0.1 respectively.

The single zone model dynamics and parameter values are taken from [33] as
presented in Chapter 3. The parameters are summarized as in Table 3.1
(Chapter 3).

Ao 90t C.s 70KJC
A 12 Cx: 70 KJ/C
Ag: I Uew: 2 W/NC°
C: 47.1 KJIC Us 2 W/ncC°
Cov. 7O0KJIC Ug: 1 w/mC°
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The system starts in the all zero initial state, and as it is depicted in Bidure

the room temperature reaches tasget value in less than 90 m{400 sec)

After that, the room temperature is kept almost constarg to3despite the
variations of the outdoor temperature. The duration of the simulation is 24 hours
(86400 secand the samplingariod was set to 1 sec.

Figure 6.2shows the controlled values fo for a 24 hours simulation period.

The graph of this figuréFig. 6.2) should be compared to that of Figuret 3
(Chapter 3) which shows the variations of the outdoor temperatdre\s it is
expected, n high temperature hours like 1®-15:00, the functiom] 0 takes
lower values, whereas in low temperature perigds increasess depicted in

Figure 6.3The estimated energy consumed is 19.8 K\A.

°C 30

25
20 [\

0 | 2 3 - 5 “ 7 5 9
X H)"

Simulating Time 24{86400se)

Figure 6.1 Room temperature variation vs time (sec). Target vall€ 24

2000

Energy (KWh)

0 1V 2 ¥ 4 $ 6 1 % 9
Simulating Time 24t{86400sec) x 104

Figure 6.2 Power variation

88



15
A
/ \
L "~,
—~ "‘ Al.
3 4 \
— ' /
oo y \
-] / \
5 14 \
H /
g / p Y
& ~,
. 4
" g
'
“ond’
i s i s 20 2

Time of diny ()

Energy (KWh)

U

Simulating Time 241{86400sec)

Figure 6.3Comparison of the outside temperatlywith the consumed energy

6.2.2 Multi-zone simulation results

Nexta multrzone systemvassimulatedconsisting of nine rooms as it is shown
in Figure6.4. The target temperaturés each zonegs shown inthis figure, are:
26, 18, 16, 17, 20, 22, 19, 18, 26 .

26

Vil
19

I8

Vil
I8

I
16

IX

26

Figure 6.4 Nine-zone model with the target temperatures for each zone
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The transmission probability was setfo 1 and any collision resolution was

not allowed. This means that a node having two or more neighbor nodes
transmitting simultaneously could not receive their packets. In this case, the node
is obliged to use the latest values of received surrounding temmeaihe
temperature variations for the five first zones are depicted in Figure 6.5. The
outdoor temperaturerwas obt ained using Walter’ s
in the all zero state. The simulation time was set to 15000 sec (~4h). As it is
obseved, after 7000 sec (approx. 2h) the temperatures settle to the target values.
Figure 6.6 shows the power profile used for the first five zones. The highest
energy consumption is due to zone I, which has the highest target temperature
and lies in the cormeof the floor. This means that two sides of the room are
exposed to the outdoor temperature and this demands high heat gains to hold the
zone temperature constant. The same reasoning applies to zone lll. Although the
target temperature for zone lll is grp @ , low outdoor temperaturé¥, causes

high energy consumption.

Next we simulated the proposed detection algorithm. To this end we considered
the same layout as in Figure 6.4, but now we forced a conservative heat leakage
due to infiltration at timef  p 1 TT.TT IS, equations (3.1)(3.6) (Chapter 3)

are modified aftert by adding the termjy (equation 3.# Chapter 3) Moreover,

we added white zero mean Gaussian noise) with unit variance to the
measurements 0 . Figure 6.8 shows theal power profile) o for this case.

As it is observed the noise is amplified due to the high dirof the PI
controller.

o

Temperature (C7)
»
g

0 S000 10000 15000
4

Figure 6.5. Temperature variatioof the zones + V vs time (sec]17]
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Figure 6.7 depicts the drift of the test statistic. After 10000 there is a positive

drift which indicates the higher power is needed than the anticipated one. This
means that there is a heat loss in the zone. In the case of a heat gain due for
exampleto a fire in the zone, the drift of the test statistic would be negative.
Again, for the WSN supporting the transfer of temperatures between zones, we

setn pAT and no collision resolution.

Power (Watts)

Figure 6.6 Power variation vs time

This means that the zones have partial information of the surrounding
temperatures, and they are forced frequently to use previous values to update
their models. As it is observed from Figure .7a threshold of value
approximately equal to 5, is crossed in @h (1200 samples) even for this
conservative heat loss. Higher heat losses or gains will lead to faster detection

times with small false alarm rates

1200 /
of samples’

k ™

Duift of 1od statistic

1
1
1
AM“_,/ .
1
1
1

" A —
0 So00 10500 15001
i

Figure 6.7. Drift of set statistic (change at time 10000 sec)
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6.3 Results of the SlOdetectionmethod

6.3.1 Training Phase

For the deterministic subsystem identification 86400 samples are used with
sampling periodY pi Qo For the outside temperature
used with parameters given in the first row of Tahieand a heater gain equal

to 600 W. The target temperatures of the zOMesare set to those

Table 6.1
Training and Testing Parameters €@uter Temperature Model and Heat Gain
WALTER 85 MODEL TEMPERATURES 3 HEAT GAIN (W)
PHASE TMAX TMIN ™ Q(T)
TRAINING 13 2 7 600
TESTING 16 1 6 700

of Table6.2 (first row) with a margin equal tor p 3. That is, for a specific
zone the heater is on until temperati¥e “Y is reached. After this point the
heater is turned off until temperature hits the lower threshvld “Y and the

whole process is repeated.
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Table 6.2

Training and Testing Zones'
Target temperatures

Zone Il 11 vV VI VI VI IX

Training 16 18 13 15 14 13 12 16 14

Testing 17 20 17 17 17 14 18 19 21

Target Temper a

Having collected the data over the period of 24 hours, the measurements of the

zones’' temperature, the

outer

temperatu

arranged into inpubutput data for the subsystem identification process. For

example, for zone Ihe outer temperature, the heating gain of zone I, as well

as the temperatures of zones Il and IV, are the input data to the identification

process whereas the temperature of the zone | itself is the output data. Note

that the number of input signals diffeom zone to zone. Zones |, I, VIl and

IX use 4 input signals whereas the rest of the zones use 5 input signals. Based
on the inpuoutput data the matricégd v and’O for each zone as described

in Section 3 are identified. During this procdks order of the subsystems
must be decided. This is achieved by looking at the singular values of the SVD
decomposition ir{4.57)and deciding on the number of dominant ones. Figure

6.9 depicts the singulavalues for zones | and V. All bgystems exhibit

similar behaviourregarding the profile of their singular values and therefore

we set the order of all subsystems is set to 2.

Singular Values

] L 7 K 9 10 n

Order

Figure 6.9 Singular values of Zones | and V.
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Next a test is run on the obtained stspace models. The outer temperature
parameters are sas in the second row dfable 6.1 the heat gain equal to 700

and the target temperaturas in the second row of Table 6The initial state of

the subsystem atel was set to p 1], whereas the elements of the 42 state
vector of the multizone system were set equal to 5 (the initial output
temperature). Figuré.10 shows the evolution of the actual and predicted
temperature for Zone I. As it is observed, aft€00 samples (appox. 2 hours
period) the state of the subsystem has converged to one that produces almost the

same output as the original system. After this point the WSN nodes can enter in

the detection phase.

1 | > "7\.‘“-3\/,‘\/\ f. /‘. «,/v“v/‘ll‘v‘/ﬂ\."}‘.

14 Real

o Predicted

Temperature 3

1‘" H.l)l) 2000 V,I-m 4004) 50‘01} 6000 7|'m d;ﬂ(l 0(:0(! 10000
Time (sec)
Figure 6.10Real andPredicted temperature of Zones |

6.3.2 Detection Phase
To demonstrate the detection capabilities of the algorithm two scenarios are used.

In the first scenario, there is heat leakage, possibly due to an open window. To

take into account the infiltratiogain (equation 3.7}he termbelowis added
n adw’Y "YTo (6.2)
to the right hand of equation (3.1).is the room volume and is an index that

indicates the air changes per hous.d&scribed in Chapter(&ec 3.2.1)he same

conservative value af is used thais pft. Assumption is made that the change
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in the dynamics of the system takes place at Zone |, at time ifgstanp 1T 71 T
Figure 6.11shows the real and the predicted temperatures in this case. The target

temperature ip X 3

Predicted =

15 A
b
Eu
1 /
LN /

8 ';'

o I"

o

2 600 10000 15000

Time (sec)

Figure 6.11Real and Predicted temperature of Zone I,
with a heat leakage starting at 1T @ 1t

As it is observed the predicted values deviate from the real ones after time index
8000. In fact thepredicted values do not stay in the zopephp  h that is the
target temperaturep . This is due to the fact that in this scenario the heater is
turned on more frequently and this forces the prediction model to produce higher
temperature values. Crossing the upper limit of the operation zone is an indicator
of a heat loss and this infoation could be fused with the results of the CUSUM
algorithm for more reliable detection of the abnormal condition. Figure 6.12
shows the drift of the test statistic of the CUSUM algorithm in case of normal
and abnormal operation. The CUSUM algorithm sthrat time 7000 and 60
samples were used to estimgtethat is the mean of the rate of the prediction
error.

In the second scenario there is an extra source of heat with power 100 W. This
source is activated at time instant 8000 and it remains onendepty of the

z one’ s Fidgure 818 @epictsthe real and the predicted temperatures in this
case. As it is observed, the predicted values in this case fall below the zone
p ¢fp Y. This is because the heater of the zone is turned on less often sinc

there is an additional heat power in the zone.
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However, the prediction model 'S unawar e
onoff process of the zone’ s heater. Si mi l
lower limit of the operation zone is andioator of an extra heat source in the

zone. The CUSUM test results for this scenario are depicted in Figure 6.14. In

both scenarios, the drift test statistic crosses the threshéM ob& ¢ within

300 samples and therefore with a false alarm rate equ@l todt 1t gt can be

determined that a change has occurred or not within 5 min.

>
=

Drift of test statistic

-10 \ Change at 5000
)
\_,‘\'.\‘___ \\:,- -

3 N i x 3 J
Y900 $000 9000 10000 11000
Time index

\
4
\ ‘
]
\
\

Figure 6.12Drift of the test statistic for scenario I, under no change and a
heat leakage startingat Tt Tt
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Figure 6.13Real and Predicted temperature of Zone I, with an extra heat
source powered on it Y TT T TT

It should be noticdat t his point that the ®“original

space model) is also linear and thus the use of linear subspace identification may

be questionable for more complex and possibly nonlinear systems. As the
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simulation results indicate althoughetdynamics of each zone are more complex
(including the roof temperature for example) a low dimensionality subsystem of
order 2 can capture itsehaviour For more complex systems the order of the
identified subsystem can be chosen high enough. For nanlsystems the
identification of a time varying system is possible using a reseirgddate of the

model

2%
e
AT
20 A" Change a1 8000
o
_.'-_: 15 /"
| /
v
Zo ‘,’
s
& s /
'E III No change
a =
0 ,__J"I__,_l'_\ai
s N N N L
To00 £000 9000 10000 11000
Time index

Figure 6.14Dirift of the test statistic for scenario Il, under no change
and an extra heat source powered dn aty 1t Tt Tt

Next, the SID method is tested when an exogenous heat noise is présent.

noise is modelled as

0 B OO —— (6.2)

where & is uniformly distributed in the range [50, 100] Watt, aid is
exponentially distributed with mean 180 sec.0 denotes a rectangular window

of unit length and height equal to one. A sample wsffglhocess is given in Figure

6.15
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Exogenous heat noise profile
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50

Figure 6.15Exogenous heat noise profile

The real and predicted temperature values for this case are shown in Figure 6.16.

As it is observed the predicted values are always lower than the real ones and this

is due to the fact that the SID method ignores the extra source of heat and it bases
tspredi ctions solely on the zone’'s heater
time instant 8000 where an extra heat source of 100 Watt is always present.

Several techniques can be used in this case to detect the discrepancies from the

target operating resttions. Deviations of the mean predicted values from the
anticipated ones, or the number of crossings of a low threshold are some possible

solutiong[45].

Real

12 Predicted

Temperature 3

0 2000 4000 000 8000 10000 12000

Time (sec)

Figure 6.16Real and Predicted temperature of Zone |, with an exogenatisibisedepicted in
Fig. 6.15and an extra heat source powered dn aty Tt 11 1T
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6.4 Summary

In this Chapter the results of the methods for detecfabnormal situations in
HVAC system were presented. The outlined results of the inigéction

approactwere as follows:

6.4.1 Simulation of the Single and Mulizone systems
First, the single zone system was simulated with dynamics and parameter values
as presented i n Chapter 3, and using

temperaturéY estimation. Thealuation of the results is as follows:

1 Initially the temperature behaviour was tested. The system was simulated
for 24h and showed a normal behaviour, since the temperature reached
the target’Y ¢ B in less than 90 min starting froms . Then, the
room temperature was kept almost constaqt o despite the variations
of the outdoor temperature.

1 Subsequently, the behaviour of the power of the heatér was
evaluated compared with thehaviourof “Y, and as it was expected in
high temperature hours like 13:4(5:00, the function 0 took lower

values, whereas in low temperature perigds was increasing.

Next, the multizone model consisting of nine zones was simulated with certain
target temperatures for each zone, andacern probability of

transmission so that any collision resolution was not allowed. The evaluation is:

1 Initially, the temperature behaviour and the power profile of five zones
were evaluated for 15000sec (~4h). As it was reasonably observed, the
target temperatures were reached after 7000 sec (~2h) and the highest
power consumption was due to zones with the highésind two sides
of them were exposed to outside temperature.

1 Subsequently, the CUSUM detection algorithm was simulated. For the
creation of an abnormal situation, a conservative heat leakage was forced

due to infiltration, at timef p 1 mt.mNbreover, white zero mean
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Gaussian noise#) 0 was added to the energy bate equations in
addition to the ternm (equation 3.7). As it was observed a threshold of
value 5 was crossed in 20 min and the detection was made. With a higher
heat loss a faster detection could be achieved.

6.4.2 Results of th&SID detection methal

The results of the second method based on the SID model consisting of two

phases of operation (Training & Detection) were as follows:

First, the mechanism of the training phase was simulated where 86400 samples

were used (24h) with sampling periodY pi Qdhe Wal t ewass model
utilized for the outdoor temperature and the hepteverwas 600W. There was

a margin equal toY p3 thatwas 'Y Y when the heater was on and

“Y Y when the heater was off and this process was repeated until the end

of the simulation duration.

1 The data collected for the training phase over the period of 24h was the

measurements of the zones temperatur
heat gains ofa&ch zone.

1 After collection, this data was arranged to the input/output form as
required in order to be processed by
temperatures and the heater gain were arranged as the input data while the
temperature of each zone whse output data.

§ Based on the input / output data the parameter matidel® QO were
identified. In order this identification to be achieved, the singular value
decomposition (SVD) process was simulated to obtain the hidden state
vectord with the order of 2.

1 Finally, a test was run on the obtained stggace models with different
outer parameters, heat gain set to 700, and different target temperatures.

The temperature of zone | was predicted and produced almost the same

output as therniginal system.
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Next, the mechanism of the detection phase was simulated. A heat leakage was
created in zone | by taking into account the infiltration gain, and this case caused

a change in the dynamics of the zone at time instantp T B 1t

1 The real and medicted temperatures were simulated and as it was
observed, the predicted values deviated from the real ones after time
I ndex 8000. The deviation exceeded t
margin and this was due to the fact that the heater was turned en mor
frequently and so, the prediction model produced higher temperatures.

1 This case was an initial indicator for a possible heat loss, but for more
reliable detection of this condition the CUSUM algorithm was applied at
time 7000 with 60 samples used toirestte the mean of the rate of the
prediction error.

1 Subsequently, the opposibé the above condition was created where an
extra heat source with 100W power was added to zone I. The source was
activated at time instant 8000 and it was remaining independently of the
zone's heater. As it was obselrved, tr
below the lower margin of the target temperature of the zone. The
CUSUM algorithm applied, as above, to detect more reliably this
abnormal condition.

1 Finally, the SID method was tested when an exogenous heat noise is
present with power uniformly distributed in the range of [50, 100] Watt
and time exponentially distributed with mean 180 sec. Again the SID
showed the deviation clearly after time instaD0@ where the extra heat

source was activated.
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Chapter 7

Methodology for energy efficiency control

7.1 Introduction

In this chapter the two methods for energy efficiency control in a HVAC system

are presented. Both methods are focused on two parameters for the energy
efficiency: the energy consumption control as well as the satisfactory thermal
comfort levels. The metlis are distinguished as follows:

The first method is an initial approach to energy control of a HVAC system by
utilizing the occupancy status of the zones as well as the occupation time period,
aiming to a significant energy saving alongside with a setiefy thermal

comfort level. It is assumed that the WSN consists of temperature and occupancy
sensors. The method proposes one integrated algorithm (including two
preliminary algorithms) that manages the heating scenarios of the zones:
proactive heating fothe adjacent zones of'land 2° | aye+th o™ 1 and
“Z op” )-proactiva (all zone are heated when occupancy is detected), and
full-r eacti ve (only the occupi ed zone i s
residence time into the zones. The wgmation time has been modeled as
exponentially distributed with three discrete mean values.

The second method is a technique aiming to balance the thermal comfort and the
energy waste of a HVAC system. This method also utilizes a WSN with
temperature andccupancy sensors, as the method above, which are exchanging

the information between them. Two types of predictions are provided in this
met hod, on one hand the zones’ temper at

predictive model, and on the other hand thenze s occupancy profil
that is provided by semiMarkov model where occupants stay into the zones for
a random period of time and then move to adjacent zones of each one with given

probabilities. The met hodndamampulatdasthe a pr o a
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risk of activation or not of the heater, relying on the weights of energy and

discomfort costs.

7.2 Methods for energy efficiency control in HVAC systems

7.2.1 Methodology Overview

The second directiononcerning the second control functisnfocused on the

energy control as far as the appropriate heating timing of the zones is concern,
taking into account the occupancy and the thermal comfort condition of the
heating space. All methods are based orséme theoretical nineone model as

presented in section 3.2.2, with the same temperature dynamics to any single
zone, as well as the same equipment as far as the WSN is concerned. The
functionality of the WSN for both algorithms is described in the sestion and,

as mentioned, is the appropriate for each algorithm. The initial first method
utilizes the occupancy as a key-factor
heating and in addition the mean residence time (occupation time) of the
occupants in edn zone. The method is an integrated algorithm that comprises

two proposed suhblgorithmsand two conventional and widely applied heating
scenarios. The two seddgorithms utilize occupancy in the form of binary

decision (occupied zone or not) and so theth require minimum information

with no prediction about occupancy dynamics. The conventional heating
scenarios are: the fufiroactive heating scenario on one hand, where the heating

i's activated in al/l zones upcpandtiee occup
full-reactive heating on the other hand, where the heating is activated only to any
occupied zone. The integrated algorithm employs the abowalgabthms as

well as the existent heating scenarios in an appropriate way and according to the
knonl edge of the expected occupants’ resi
zone.Depending on the occupation time of each zone the algorithm manages the

proactive heating or not of the directly adjacent zones.
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Towards this direction, a novel technique ®pgosed as the second method,

which aims to balance the comfort and energy costs in a-pauig system. The

decisions © activating theheatingof the zonesor not may be taken either

centrally or in a distributed manner by wireless sensor nodes scattered in the
multi-zone system. In any case temperature and zone occupancy information

must be exchanged between a node, responsible for a zone, and its neighboring
nodes. The decision process itself relies on two kinds of predictions: a)
temperaturd i me predictions for the zones and
The emphasis i's on the zones'’ temperat
deterministic subspace identificat method is used to model the thermal
dynamics of each zone. That is, each zone is modeled by a simple state space
model capable to produce accurate predictions based on the surrounding
temperatures, the heating power of the zone and the current atagartimarizes

the temperature history of the zone. For
Markov model is considered, where occupants (moving as a swarm) stay in a

zone for a random period of time and then move to adjacent zones with given
probabilites. What is needed by the decision process is the distribution of the

first entrance time to unoccupied zones. Aiming to a proactive action, the
proposed method periodically computes the risk of activating the heater or not

and decides in favor of the amti that produces the smaller risk. The computation

of the risks relies on the relative weights of the energy and discomfort costs so

that the balance between the total energy consumed and the total discomfort cost

may be regulated.

7.2.2 Initial approach for energy efficiencycontrol

The rationale of our proposed algorithms is using the occupancy of the zones as a

basic factor to control the heat energy and the thermal comfort condition.

The basic characteristic is the proactive heating of the emfjazones. The
algorithms -mapel gnddopephérlédQui re mini mum i
with no prediction about occupancy dynamics, since they utilize occupancy in

the form of binary decisions (occupied zone or not). The third one, namely the
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“ Ad a p reguireskhgwledge ofthe expected residence time of the occupants

in each zone. Depending on the occupants' residence time into the zones, either
the adjacent zones are not heated or the directly adjacbopjlare proactively
heated or,furthermore the neighbors of the adjacent zonesh{d) are
proactively heatedAll the proposed algorithms could be applied to all buildings

as an alternative heating method from, a) the centralized heating, where all the
zones are heated constantly even if they ateoncupied and b) the heating of
each individual zone, only when it is occupied, or else, they stay unheated. The
goal of our proposed method is the energy control as well as, the maintenance of
the comfort condition in areas of the buildings that renvaicant for relatively

long time, or they are in use for short time periods during work (conference
rooms, meeting rooms, sections of private study in libraries etc). Otherwise,
these areas would be normally heated, wasting energy vainly or instead, stay
unheated and uncomfortable. The proposed algorithms have been contrasted with

the above two heating scenarios.

7.2.2.1 Rationale of the algorithms

A. -hfiolp 6 Al gori t hm

The functiorality o f t-hep™ lal gor it h mthreegorecsgasec r i bed

model asa part of the ningonemodeand it ' s the f adné owi
space modebf Fig.7.Ja, when occupants enter the zone 1, the heating in this
zone starts until it reaches the target temperafife and the occupancy sensor
sends i t 'informatienttoeticetwirel®ss actuator nodes the directly
adjacent zone® and 3(1st hop) Hence the zones 2 & 3 start to be heated
concurrently If the occupants exit zone 1 and visit zones 2 or 3 then the adjacent
to zones 2 or 81,4,5,6) will be heied (Fig7.1b) [46].
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Adhopo Algorithm

for each zone
If zone occupiethen
heatzoneand its Xhop neighbors
end

B. -hfioe2p 6 al gori t hm
The rationabe” obl gherei t“m i-Bophewistamet e

additioral characteristidhe proactive heating of the neighbors to the digect
adjacent zones (4,5&6) (Figlb). When occupants enter the zone 1, the heating

starts in this zone and also starts in the zones 2 and 3 as well as in 4,5@Ind 6

Azhhopo algorithm

for eachzone
If zoneoccupiedthen heatzoneand hop neighbors
and 2hop neighbors

end

Zone Zone Zone
Zone Zone
1 2 4
1 2
Zone Zone
Zone 3 5
3
Zone
6
a) b)

Figure7.1la) Occupied zone (zonéhop& (R&B8Lt I p) aBgace
directly adjucenthopanid (48lei5glBhor zones *“2

C. i Adagorithmv e 0
The third algorithm, namely the “Adaptiyv

mean residence timed () of the occupants in each zone. Depending on the
occupationtime into the zones, either the adjacent zones are not heated or the
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directly adjacent (<hop) are proactively heated éuythermore the neighbors of

the adjacent zones -t{bp) are poactively heatedThe rationale of the third
algorithm, takes into aotint the occupants' mobilitate through the areas of a
space. The longer is the mean residence time in an occupied zone the less is the
need of a proactive heating to the adjacent zones. The opposite situation where
the mobility rate increases, resulta ithe need for proactive heating of the
adjacent zoneslhe mean of the occupation time has been quantized into four
states: st short time mst= mediumshort time mit= mediumlong timeand It=long time

| f t he oesidencp enmei s’ 0 < 0 < st then the zones will be
proactively heated (Fujproactive scheme), because the residence time is too
short and the occupants are moving quickly through the areas. df thé the
occupants exceeds the short time value until the medhon time

(st<d0 <mst) thkeopt hal g&rithm is applied, wh
zones and their neighbors are proactively heated. In this case the rmalbditf

the occupants is in the time range where there is a hightpliohao visit both

layers of the adjacent zonediréctly adjacent &neighbors).The third case is
when 0 is in the range between meditghort time and mediudong time

(mst <o < ml t ) -haonpd” tahleg o‘rli t hm isiathetipegp | i ed,
range where the occupants stay much longer into the present zone and there is a
probability to visit only the directly adjacent zones. The fourth and last case is
wheno is between mediudong time and long time (mk 6 < It) and there is

no need for a proactive heating to any of the adjacent zones.

fAdaptived Algorithm
" for eachzone
if zoneoccupied &0< t, <st
then full-proactive algorithm
if room occupied &t < t;,, < mst
then 2-hop algorithm
if room occupied &mst < t, < mit
then 1-hop algorithm
if room occupied &mlt < t, <t
then full-reactive algorithm
end
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7.2.3 Second proposed method for energy efficiency control based on the
SID model
We consider a multizone HVAC system consistingaafonest FiQ phci8 i
Each zone equipped with a wireless sensc
temperature and occupancy information to its neighbors or to a central
processing unit. The occupaninformation may be very simple i.e., binary
information indicating the presence or absence of individuals in the zone, or
more advanced like the number of occupants in the zone. The objective is to

minimize the total energy and discomfort cost defired a

0 © (0 (7.1)

w00 ¢ ¢£Q0 00" "YQOo

In equation (7.1)00 denotes the indicator function which takes the values

0 depending on whether the condition A is true or fadseis the power of a

heater that covers zogeand O is the state of the heater, that is the heater is on

or off. Thus, the first terrof (7.1) is thetotal energy consumed by the mudtie

system. For the discomfort cost we define the cost per unittirared the target

comfort thresholdY. As | ong as t h"¥islighentbdri¥thet e mper at
occupants do not feel discomfort. The parameétenay depend on the zone, the

number of the occupants (e.g. the total
to the number of people experiencing discomfort) and the difference of the

s t &amy ¢he eomfart tlreshold. It is worth noting that there

is a tradeoffbetween energy savings and discomfort cédit.zones may be

Z0one

preheagd to the comfort level thus rendering the discomfort cost equal to zero.
This policy is inefficient due to the large amount of energy consumed. In the
other extreme we could act reactive by heating a zone only upon detecting
occupants in it. In this caseetlenergy cost would be as small as possible but the

discomfort cost could increase dramatically. In the sequel we will describe a
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method that acts proactively by taking periodically decisions on whether to heat

on not a zone. If the entrance to a zoneeisiygkd then we postpone heating until

the next decision epoch. If on the contrary, it is anticipated that a zone will be
occupied before the zone's tempe+yature r
heat the zone.

The decision of whather or not the heateof an unoccupied zon@ should be

turned on depends a) on the current state of the zone, b) the relative value of the
energy costw and discomfort costd per unit time, c) the temperatures of

the surrounding zones and d) an estimate of the timat the zone will become

occupied. This decision may be taken either centrally from the central processing

unit that gathers information by all zones or in a distributed manner by each
zone's node after coll ect i ntpepodsiklityr el ati v
to divine the decision process functionality between the central unit and the
wireless sensor network nodes. For example, the prediction of the first entrance

times to unoccupied zones may be taken by the central unit, that is aware of the
location of people in the mutone system, and then the predicted values may be
communi cated back to the zone’s nodes f
implementation of the decision process is irrelevant to this paper and it will not

be further anaized.

We assume that time is discretized & ¥ “"Yis the sampling period, and that

each period, and that each node takes its decisions periodically@sangpling

periods. Note that there is no need for the nodes to be synchronized tohesich ot

Let ® 0 denote the random variable that models the remaining tine from the

current time instand until entrance to the unoccupied zane It is obvious that

the random variable® o6, for the various unoccupied zodeh do not follow

the same distribution. We further assume that the node is capable to make
predictions for the time it takes to exceed the comfort thresia@io this end,

let Y O denote the time period that is required to exceéd the heater is

turned on immediately. Similarly, we defin&¥ 0 as the predicted time to

reach the comfort threshold if the heater remains off for a p&@iadd then, at
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the next decision epoch it is turned on. The relation of the aforementioned

parameters is shown Figure 7.2.

- .
DT, !
7 1+=DT,

Figure 7.2Predicted time intervals related to the decision process

Suppose now that at timethe node of the unoccupied zogehas to take a
deci sion whether to turn the zone’'s heat

decision epocldthe risk to turn the heater on is

Y 06 wO0dY o6 ®o (7.2)

W ®wWo Y 00Y 0 ®o Y 0

Thatis, if'Y O @ 0 there is plenty of time to reach the comfort threshold
eventhe heatingstars at the next decision epoch and therefore we consume
unnecessarilyw O units of energy (this is the case depicted inuFeg7.2).
Similarly, if Y ¢ @®@o Y 0 thenw @O0 Y 0O units of energy

are wastedNote that there is no risk to turn on the heater if the entrance to the
zone happens soer than it is predicted. In a similar fashion we calculate the

risk of keeping the heater off. In this case
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Y o6 6006 Y o (7.3)

Y o Y 0o (7.4)

Consider for the moment that there is no randomness 0 , that is strict time
scheduled occupation of zones. Typical examples are the classrooms in a
university campus. In this case, criterion (7.4) takes a very simple from since one
of the involved probabilities is equal to one and the rest asswamnaline of zero.

Thus, if®@ 0 Y 0O then the heater is turnédONTf Y ©0 @® O the

heater remain$ OF Bid if™Y 0 @ 0 Y 0 the heater will be turned
ON/OFFdepending on the values of the relative enemyy discomfort cost. The
balance between these two costs is regulated by the weightsd6 .

If @ O is random then criterion (7.4) needs to be slightly modified as the value
of & 0 is unknown. In this case we repla@ét) with its conditional expected

value giventhanlY 0 @ 0 Y 0. Therefore, in criterion (7.4) O is
substituted bfD®w 6sY 0 ®oOo Y 0O .

From the previous discussion, it becomes clear that the decision process needs
the estimates’Y 6o h'Y o0 and the distribution of the proces® o .

The former is the subject of the next subsection whereas a discussion on the

distribution ofc 0 is left for subsection 7.2.3.2.

7.2.3.1 Temperaturéime predictions based on SID
In order to make predictions about the temperature evolution of a zone, the SID
model has been implemented as in the detection method of Chaj@estibn

5.4). As in the aforementioned method (Chapter 5), each zone is treated
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separately and is represented by the discrete time linear, time invariant, state

space model of the equations 4.1 and 4.2. The process of the SID model for the
temperature predion of each zone is the same as it has been described in

Chapter JSubsection 5.4.1.2).

For the estimation of the staspace matrice®h Q'O of each zone,he
“training phase” iI's needed during whioch
relative measurements to a central compu
presented in Chapter(Subsection 5.4.3)

After t he compl et i on e stdte spateemodeltmateidesni ng p
oMM AT ‘@for each zone are communicated back to the node responsible for

the zone. Upon reception of the matrice
phasé, that is starting from an initial state, they update the a&te equation

(w ow 006 for a predetermined period of time, using the
measurementsft he surrounding zones anNbtet he st a
that the“training’ and the“convergence phaseeed to be executed only once

prior to the normal operation of the nodes. After trmnvergence phasdhe

nodes enter t o”. Duhng this phase thesnodesiupdate the state

of the model (as in theconvergence phaseand periodically they take decisions

on whethertoturnthemoe ' s heater “ON” or not. Supp

epochothe stateof the tagged unoccupied nodews The node bases its decision
on the estimate®¥ o0 and”Y 0. Recall that,”Y 0 andis the time needed

to reach the comfortlevéYi f t he heMamely i s “ ON”.

Y o | Edgo Y (7.5)
The node “fr eez edstoitstchrent valug u(morewexzent o r
temperatures of h s urrounding zones, and the tag

and starting from the stat® repeats equations (4)1and (418) until w

exceeds the valuéy¥. Note that
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W OO0 w 00 06 00 O06 E (7.6)
000 0 ® (0]
and foro 0 E 6 itis obtained
W 60w 6006 EDO 00 0o
00w 00 o ‘OO0 60 06 (7.7)
If © is settow "Y and
O Y 000 06 0o
then equation (7.tpkes the form
0 00w OO0 006
OF W ®w 000 ww 060 (7.8)

where Qs the identity matrixandthe diagonalization of the matrix hasbeen

considered a® wyw , with ¥ the diagonal matrix of the eigenvalues amd

the matrix of the corresponding eigenvectors. Numerical methadbeaszsed to

solve equation (7)8for 'Q In a similar manner theY 0 is computed. In this

case however, first equatioo ( ow 0606 is repeated times with

inputvectoro r ef |l ecting the fact thathgfrorme heat e

the new stateo ,thetime neededtoreacttii s esti mated i f heat e

7.2.3.2 On the distribution of,, <«

The random variabléd 6 expresses the remaining time from the current time
instant 0 until entrance to zon& . Namely the assumption is madethat
occupants move around as a swarm, visiting zones either in a predetermined
order or in a random fashion and finally they end up in Zondeach time the

occupants visit a zone they stay in it for a non zero tamperiod which is itself
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a random variable with distributioi® w . The variableo is usedto designate

calendar time, the time elapsed since the process started} andisedto

designate the time elapsed since entry to a zone. The zone occupagon t

distribution O @w may be given parametically either a priori or interred from
examination of hi storic data by suitable
We may use the empirical distribution function (e.d.f.) instead which is the
nonparametc estimate ofO w . Namely, if a sample o occupation periods of

zonedhwho B o  is available, then

"0 -B O N 1o (7.9)

where'Q0 is the indicator function.

Let us consider fst the simple case of two adjusting zoddsd with zoned
being occupied and unoccupied as it is shown in Figure3. We assume that
the occupants remain to zome for a random period of tim& which is

distributed according t® @, and then upon departure they enter anne

Figure 7.3Movement of occupants from zoteto the adjacent unoccupied zae

In this caseld 0 expresses the remaining waiting time to zéanand follows

the residual life distribution which is defined by

Y o p Y © 0 Tt @ t — (710
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Next the case that occupants are currently in a pong consideredand upon
departure they visit in cascade zomeRX 8 &0 as it is shown irfigure 7.4.
Then,

Zp S zZ
I

—

S

Vs

Figure 7.4Movement of occupants in cascade from zanto zoned .

o O O ® E & (7.11)

where® is the remaining time in zorge and® is the occupation period of zone
a 8lt is well known that the distribution ofd 6 is the convolution of the
distributions of the random variablédtd /8 8&hd . Thus,

~

O ® 0O O YOZOoOwzOwzZEZO o (7.12)

with' Y @ p Ot «@FXOTt. A more compact form is obtained by
considering a transform of the distributions, i.e. the Laplace transform, the
moment generating function, or the characteristic function. Using the moment
generating function (mfg) which for a distributid® w of a nonnegative

random variabl&is defined by

O i Q 90 w

equation (7.2) takes the form

'O i Yi 00i J0i B8I0 i (7.13)
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In some case@unfortunately few) equation (7.@an be inversed analyticaliy
order to calculate the distributioi® . For example, if the occupation
periods wh i=0,.... &, p, are exponentially distributed with corresponding
parameters , then® is also exponentially distributed with parameterdue to

the memoryless property of the exponential distribution, and the probability

density function ofo 0 is (assuming that the parametersare all distinct)

Qwnc_ (7.14)

(The expression for the general case, of non distinct parameters, is slightly more

involved but still exists). If a closed form for the den&y w does not exist,

or it is difficult to be obtained, we resort to thlsaddle poingpproximatio [41]

to invert O i . To this end, for a random variabte with cumulative
distribution function (cdf)’O & hwe define the cumulant generating function

(cgf)0 i as the logarithm of the corresponding ri®gi , namely

VI a €A
Then, the saddlepoint approximation of the probability density function (pdf)
Qwis

T
"Q w — Agb iHh (Hho (7.15)

wherei Hb is the solution to the saddlepoint equation

VI W (7.19

The estimation (7.)5relies on numerical computations based on thaicgfy,

which in turn depends oil® i 8Note that, we may use the empirical mofi
instead, so that a nonparametrgtimation of the pdQQ w is possible.

The more general case is to model the movement of the occupants in the multi

zone system as a seMarkov process. The states of the process are the zones of
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the system and at the transition times they formmbeelded Markov chain with
transition probabilities) . Given a transition from zoné& to zoned, the
occupation time ind has distribution functiofO . The matrix0 @ with
elements 0 ® N 'O w is the so called senMarkov kernel.

The occupation time distribution in zodeindependent of the state to which a
transition is made 80w + 0 . Consider now the case that at tide
occupants existnizoned and the node of zongé has to make a decision on
whether to start heating the zone or not. For the decision process the distribution
of time until entrance to zore fd 0, is needed® o is the sum of two terms.
The first term is the residual occupation time at zénand the second term is
the time to reaclt upon departure from zore. The distributionY @ of the

first term is given by (2.0) whereas for the second term we have to consider the
various paths taken upon departure from statd’hus,if zone & neighborsi
zones namelyd s Q pfB R , then the time to reach zore upon departure is

distributed according to

Ow B R0 @ (7.17)

where’O  is the distribution bthe first passage from zore to zoneq .
Pyke [42] and Mason[43], [44] provided solutions for the first passage
distribution in a semMar kov process. For exthanpl!l e, Py

"Oi , the elementwise transform of the matixw O w , is given by

Oi Yi O "Yi ‘O i (7.18)

where”Yi is the transmittance matrix with elements the transféims of the
occupation time distributio® . The notationd denotes the matrix that is
formed by the diagonal elementsibf A simplified version of (7.8) is obtained
if we let wi AADO "Yi and w p AAD "Yi , the QD
cofactor of O "Yi . Using this notation, for a sefMarkov proces®f ¢ states

we get
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o i @ — (7.19)

By relabeling the statgsf8 &¢ p of the process we can find the transform of
the first passage from any zone to zane

In summary,

O i YiOOi Y{iOB 1O i (7.20)

with 'O i computing using 1.19. Next, the saddlepoint approximation

technique can be used to calculate the def@ity .

We have to mention that the process of estimgatine first passage distributions

needs to be performed only prior to the decision process. Thus, given the
topology of the multzone system, we posit a parametric family for the
occupation time distributions afrod we est
sample data. Then, the transition probabilities are estimated based on the data

and the occupation mgd i is obtained. Having in our disposal the transforms

"O i the transmittance matriX¥ can be formedand be solved for the first

passage transfori® i using equation (79). Finally, numerical methods may

be used to invert these transforms in order to obtain the necessary probability

density functions.

7.3 Summary

In this chapter two HVAC control strategies were proposed focusing on the
energy consumption control as well as the maintenance of the thermal comfort to
satisfactory levels, by taking into account the occupancy of the zones.
All strategies utized a WSN network of temperature and occupancy sensors to
contr ol the zones’ heating depending on

residence time (occupation time) into the zones.
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The first method was an initial approach with the effort to reduce energy
consumption while in the meantime preserving the comfort condition of the
occupant s. The propos-edp7t,e ehtope g da2sd wehr ee ;
“Adaptive” al gorithms. The first t wo al
information in the form of bingr deci si darop.” BHegotT1lt hm pr o\
proactive heating of the adjacent zones when occupancy was detected into a
zone, whhdp” trhreovi2Zded proactive heating t
as well as the neighbor to them, when occupancy wtetbd into a zone. Both

algorithms were preliminary to the following more integrated algorithm.

The “Adaptive” algorithm required an add|]
residence time of the occupants for each zone (occupation time). Thehahgori

utilized the functionality of the above preliminary algorithms, as well as the two
scenari oProabeiveul (all zones heated whe
“fawlelactive” (only the occupied zone heat
the occupton time of the zone.

The second strategy was a method where temperature and occupancy predictions

were fused, in an effort to balance the thermal comfort condition and the
consumed energy in a muitone HVAC system. The key point of the method

was thedecision process that relied on two kinds of predictions: the temperature

time prediction and the occupancy profile of the zones. Temperature predictions

were based on a subspace identification technique that was used to model the
thermal dynamics of eactone independenthA proactive heating of the zones

was the task of the method, and to achieve that it proposed a computation of a

risk of activating the heater. The computation of this risk was based on the
estimation of the energy and discomfort coatsthese two parameters balance

the total energy consumed and the total discomfort cost. Appropriate probability
distributions and mathematical models were applied to model the occupation

times of the zones, while a seMarkov process was considered ftire

occupancy predictions with the logic that occupants were moving as a swarm

from zone to zone by staying in each one for a random period of time.
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Chapter8

Results of the methods for energy efficiency in HVAC
systems

8.1 Introduction

This Chapter contains the results of the methods presented in Chapter 7. In
Section 8.1 the results of the first initial approach for energy efficiency are
presented with the results of the evaluation of the proposed algorithms in contrast
with the fullproactive and the fulieactive scenarios. In Section 8.2 the results

of the second method for energy efficiency based on the SID model are presented
including the results of the training (Subsection 8.2.1) and the decision

(Subsection 8.2.2) phases.

8.2 Results of the initial approach

The samenine-zone model(Figure 3.3- Chapter 3 was simulated with e
model parameter values (Table 6.1) taken from].[3he simulations had
duration of 5 hours and external temperature §€t Fhe target temperature

(Tg °C) of the zones werset as in Tabl&.1.

Table 8.1
Target temperatures of the zones

Target temperatures
Zone I Il 1] v V Vi VIl VI IX
3 19 20 19 20 21 20 19 20 20

Initially, +tHloe "’ alhgoapr’redmelated dnd at a time, by
utilizing several (~50) mobility pathshrough the nine zone$he same value of

the mean occupana shas beem sdt thealh zoees fori each
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simulation. The mobility paths were based on the probasiliaf zone visits
shown in Table 8.2and they were the same for all simulations. ugtthe
efficiency of the algorithmsvas evaluatedas far as the power camaption and

thethermaldiscomfort time is concerned.

Table 8.2
Visitation probabilities of the adjacent zones (A746]

Occupied | Az | Az | Az | AZ | AZ | AZ | AZ | AZ | AZ
Zone 1 2 3 4 5 6 7 8 9

1 12 1/2
2 1/3 1/3 1/3
3 14 3/4
4 1/6 2/3 1/6
5 1/4 1/4 1/4 1/4
6 1/4 1/2 1/4
7 12 1/2
8 2/3 1/6 1/6
9 1/2 1/2

The mean occup amt)wvdluesruged, havebean guantizedniato (

four states: short time (st=250sec), meds&morttime (mst=500sec), medium

long time (mlt=750sec), and long time £t000sec). In order to create the

random mobility pathghe first three zones (1,2&3)ere initially used one at a

time, as the entrance zones. The simulation results of each entoareceazl no

significant diversion and so, for the rest of the simulatiaose 1has beemsed

as the one and only entrance zomerthermore the results of the above

simulations weecont r ast wirtolactth ev er”é& aadntidi veFulslc hem
whichthey have had the form of algorithms in our simulation tool.

I n therodO&ative” scheme, al | the zones Wwe
starts when the very first occupancy entrance is detected in the entrance zone and

stops when all zones are unocewp

AFuprloacti vedo Scheme
for eachzone

If zone occupiethen

heat all zone
end
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The fRalclti ve”, I's the scheme where weac
occupancy is detected into it and heating contislyountil the occupants exit
the zone. Otherwise each zone remains unhediggected results were

obtainedandcon si st ent with the algorithms’ rat.i

AFurlddacti veo Scheme
for eachzone

If zone occupiethen

heat only this zone
end

For all the above values af , t heproRuwltli ve” scheme resul
greater energy consumption and this watdly expected due to the continuous

equal heating of the zones. This scheme, instead, resulted with the less
discomfort time (the tim where the temperature is in the discomfort range) and

this is reasonable, since none of the zo
comfort t hr ehsolpd| dal glohre t hth has achieved
energy consumption, while the third and thartb greater energy consumption
achieved fhropm tama-r@®dhet i“vfeu'l I scheme respe
second best discomfort time (the shorter time that temperature is out of the
comfort condition) hdaopbeeavhidafaurthvee d hfi mr a
achieved iopm a#meatfluve” respeatleBvely. I
shows the evaluation of the algorithmswiths et t o 500sec (=8min)

the values of simulation results.

Table 8.3
Evaluation of the algorithms witlhné same mean
residence time of the occupanés LV TTMQ®

Algorithm Mean I;nergy Mean.Discomfort
Consumption (KWh) Time (h)
Full-proactive 8.3 13
Full-reactive 3.6 12.0
1-hop 6.9 3.5
2-hop 7.8 1.9
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Figure 8.1Mean value of Energy consumption (EC) and Discomfort time (DT)
with the same occupanth@sec)r esi dence ti me v

Similar, with different performance values, was the ea@bn of the algorithms,

with the t, in all zones, set to each one of the remaining values (250, 750, 1000

sec) . Our next st e-nop,viehop, Fultpreactive,l Fgho r i t h ms’
reactive) simulation utilizing differeng,tvalues for each zone.

Specifically, thed values set to the nine zones were: for zonegll & IX

0 =1000sec, forone 110 =500sec, fozones Ill, IV& VIII 6 =750sec and for

zonesV&VIO =250sec. Next, the “Adaptive” alg
combines all th above algorithms by maintaining the saievalues in each

zone. The “Adaptive” algorithm was the
“Fwulelacti ve” was the best. On the other h
much less discomfort time thah & “rFeudcdt i ve” one. The conc

al gorithms eval uat i adhievad ssatisfattaygnergy h e “Ad
consumptionalong with an equallysatisfactorytime where the zones are in a
comfortcondt i on . The rest-hop”"®hdpal goeri ekm$ ua

as abové¢46].

Table 8.4
Evaluation of the algorithms with various mesfr(0 ) [46]
. Mean Energy Mean Discomfort

Algorithm Consumption (KWh) Time (h)
Full-proactive 8.1 0.5
Full-reactive 31 103
1-hop 6.6 2.7
2-hop 7.6 11
Adaptive 6.5 23
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Figure 8.2Mean value of Energy consumption (EC) and Discomforttime @i) occupant s
residence time of VIl &XI=1000,11=500,lII,IV & VIl =750, V,VI = 250sed46]

The resulting heatingnergy savingnd the mean discomfort time difference, is
shown in T&ble8.5. They have been estimated in accordance with the values of
Table8.4, and in comparison with the fytiroactive scheme where all zones are
equally heated. The heating payback has been estimated in (KWh) and
percentage (%) with negative values that emphasize the difference from the full
proactive scheme. The discomfort time difference is in (h) with positive values to

emphasize the extra timéhere the space is in the discomfort condifisi.

Table 8.5
Energy savin@f the algorithms and extrai§omfort
Time in comparison with the fuproactive scheme

Energy saving Discomfort
Algorithm Time
(KWh) Percentage | pitterence (h)
Full-reactive -5 -61.7% +9.8
1-hop -1.5 -18.5% +2.2
2-hop -0.5 -6.1% +0.6
Adaptive -1.6 -19.7% +1.8
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8.3 Results of the method for energy efficiency based
on the SIDmodel

As before in Section 8.1, the same Ramme system was simulat¢dig. 3.3),

consisting of a squared arrangement of rooms (zones) where each room (zone) is
equipped with a wireless sensor node, and the parameter values for this lumped
capacity zone model have been taken from §&3presented in Chapter 3

Theassumptio i s made that heat transfer takes
wall s as well as between room’ s air and
ground on the room temperatwsiee neglected. North and south walls have the

same effect on the roomtemperata and i t’' s been assumed t
and west walls. According to these assumptions, there is a symmetry in the
dynamics of the zones. For example, zones I, Ill, VIl and IX (Fig. 3.3) exhibit

the samebehaviour Note that for the mukzone syste several state variables,

such as wall temperatures, are common to the individual zone systems. In the
simulations the ningone system is treated as a single system with 42 states and

nine outputs (the temperature of the zoresjlescribed in Chapter 3.

As it’s been al r ead"Ydenotesthe ootside ttmperature Fi gur
which is assumed to be uniform with no loss of generality. For simulation
purposes daily outside temprerature var.
model [34] as presented in ChaptgiS&ction 3.2)For this model, th maximum

temperature of the day , the minimum temperature of the day and the

mean of the 24 hourly temperaturé need to be provided in order to estimate

Y.

8.3.1 Results of thefitraining phased

For the deterministic subsystem miiéication we used 86400 samples with

sampling periodY pi ‘Qw For the outside temperature
with parameters given in the first row of table | and a heater gain equal to 600W.

We set the zonesY tothese get t emperatures
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Training and testing parameters for outer temperature model and heat gain

Table 8.6

Wal t er 88 mo Heat gain (W)
Phase Tmax Tmin Tm n 0
Training 13 2 7 600
Testing 16 1 6 700

of Table 8.6 (first row) with a margin equalt6

zone the heater is on until temperatife Y

p 0. Thatis, for a specific

is reached. After this point the

heater is turned off until temperature hits the lower thresiold “Y and te

whole process is repeated.

Table 8.7
Training and Testing Zones'’
Target temperatures 3
Zone I 11 vV VI VI VI IX
Training 16 18 16 15 14 13 12 16 14
Testing 17 20 17 17 17 14 18 19 21

Target Temper a

Having collected the data over the period of 24 hours, the measurements of the

Z0one

S temperatur e,

t he

out er

temperatur

organized into inpubutput data for the subsystem identification process. For

example, for zone | the outer temperature, the heating gain of zone I, as well as

the temperatures of zones Il and IV, are the input data to the identification

process whereas the temperature of the zone | itself is the output data. Note that

the number of input signalsftér from zone to zone. Zone |, Ill, VIl and IX use

4 input signals whereas the rest of the zones use 5 input signals. Based on the

input-output data the matrice&, B, C and D are identified for each zone as

described in Section 3. During this processdtaer of the subsystentss to be

decided This is achieved by looking at the singular values of the SVD

decomposition and deciding on the number of dominant ones. Figure 8.3 depicts

the singular values for zones |, Il and V. All subsystems exhibit simila

behaviourregarding the profile of their singular values and therefore we set the
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order of all subsystems equal to®ext we run a test on the obtained sttace
models. We set the outer temperature parameters as in the second row of Table

8.6 and tle target temperatures as in the second row of Table 8.7.
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= y Toot=-e
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-3. Zone V o
'E . \ / Zonel
S0 .

Order
Figure 8.3Singular values of zones |, Il and V

The initial state of the subsystem model was setli® D], whereas the elements

of the 42 state vector of the muitone system werset equal to 3 (the initial
output temperature). Figure 8.4 shows the evolution of the actual and predicted
temperatures for Zone | and IV. For zone | the heater was on (heat again equal to
700) whereas the heater for zone IV was off. As it is observeéel, 2000
samples (approx. 80 minutes period) the state of the subsystems has converged to
one that produces almost the same output as the original system. After this point

the WSN nodes can eriter in the “decision
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Figure 8.4Real an Predicted temperature of zones | and IV
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8.3.2 Results of thefi d e c iplaasen n

It shouldbenoticedat t hi s point that the “original
space model) is also linear and thus the use of linear subspace identification
maybe questionable for more complex and possibly nonlinear systems. As the
simulation results indicate, althoughetitdynamics of each zone are more
complex (including the roof temperature for example), a low dimensionality
subsystem of order 2 can capturehk&haviour For more complex systems we

can choose the order of the identified subsystem high enough. Foreamnlin
systems the identification of a time varying system is possible using a recursive
update of the model.

Next the scenario ofigure 7.3was simulatel. The assumption is madéat
occupants enter zone | (at time instant 5000) and then after a randoch gieri

time they enter zone IV, where they remain for 3600 sec. Zone | is heated since
the beginning of the process (heat gain 900 W) until the occupants leave the zone
to enter zone IV. Zone IV uses a heater with gain 1200 W, which is turned on (or
off) according to the decisions of its node. The target temperatures for zones |
and IV arep 8 andp @ 3respectively. For the first set of experiments, the

occupation period of zone | is Gamma distributed, i.e.

Vh —a Q (8.1)

with the shape parameter v and{ such that the expected value @h
O® | X ,is 3600 and 7200Decisions were taken evei® ¢ xseconds.
Figure 85 shows the total comfortost achieved fowarious values of the
comfort weighto . As "comfort cost" is defined the value that represents the loss
of comfort per unit time and as "comfoneight' is defined the value that
represents the thermal comfort per unit tifibe results are averages over 200
runs of the simulation. Thease ofdé  Ttis thefull reactive case where heating

of zone IV is postponed until occupants enter the zone. Ouothlee extreme, for
high values of6 the decision procesacts proactively byspending energyin

order to reduce thdiscomfort level.Figure 8.6shows the total energy cost in
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KWh for the twocases of Figure.B. As it is observed, the higher value®fthe
more energy is consumed since then heating of zone IV #arlier. The
difference baveen the two curves of Figure 86justified by the difference of

the means of the occupatiperiod,O® o @ TandO& ¥ ¢ mfar the two

cases.
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Figure 8.5Total comfort cosvs. 6 . The occupation time of zone |
Is Gamma distributed
In Figure 8.7 the temperature profiles for zones I, IV and for two different values
of ¢ is ploted As it is observed the value 6f T corresponds to the reactive
case, that is the heater of zone IV remains off until occupants aaeatkin the
zone. On the other extreme a large valu® ¢fi0000) will force the heater of

zone |V to be turned on as soon as possible in an effort to reduce the discomfort

penalty
3
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Figure 8.6 Total energycost vs6 . The occupation timef zone |
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The scenario of Figure 7(Bvo zone scenarioyas also simulated for Pareto

distributed occupation times of zone I. The pdf for the Pareto distribution is

e T He o 8.2)
T 0w O
With expected value
oo —h wp (8.3)
H W p
A
25 1| N300
2.1
g ' X =00

\ R X, =3600
o A J\\/
\
by b o I

w —— —— -]
0 1000 2000 3000 4000 500 6000 000

Figure 8.8Pareto pdf for various values af .

Figures 8.9and8.10 show the total comfort cost and ttaal energy consumed

respectively for various values of tkemfort gaind . As it is observed, a 50%
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improvementon the comfort cost (compared tbe reactive case) can be
achieved for a value af equal to 1000. However, there iparformance floor
(this is evident for the case of ¢ m);twhich is due to the nature of the
Pareto distribution. Most othe samples for the occupation time periae
concentratectlose tow and therefore there is not enough time to pretieat
next visiting zone, which in turn implies high discomfodsts. Moreover, the
heavy tail of the Pareto distribution causame extremely high values of the
occupatiorperiod whichresult in an increase of the total consumed energy, as it
canbeobserved clearly from figure 8.10

Next, the scenario digure 7.4 was simulatal. The occupantsove in cascade
from zone to zone as it is depictedrigure 8.11 The target teperatures for the
zones are given in tHest row of Table8.8 whereas the heghin of each zone

is given in the second row of TalBe8 For the occupancy tim&f each zone we
considered an exponential random variatih mean provided in the lastwoof
Table8.8. Note thatthis assumption is the least favorable for adjacent zones due
to the memoryless property of the exponential distribution.tdta¢ comfort and
energy costs for this scenario are plottedrigure 8.1Zor various values of the
comfort weightd. Theresults are averages over 100 runs. The two curves for
eachcost correspond t® ¢ xand O p @ xespectively. Ast is observed,

considerable comfort gains are achieved foraalerate increase of the consadn

energy.In Figure 8.12weal so show the costs for a

which the heating of a zone starts as soon as occupants are ddtedtsd
neighbor zone. For example, when occupants enterl¥oriee heater of zone V

is turned on ando on.
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Figure 8.9 Total comfort cost for Pareto distributed occupation period
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Table 8.8
Parameters used in cascade movemestasm

Zone I IV VvV oovIE X VI el
Target 3 17 16 17 17 16 14 17 18
Power (KW) 0912 09 09 09 12 09 12
Mean Timex1C | 36 27 18 40 54 45 30 20

L}

Comfort cost

3000 } Fixed pro-
| active energy

Cost
500 ¢

105

\,
N \
p! o~
3500 N ‘
T \ 1o
Energy cost
o 04

Total comfort cost

2000 +

Total encrgy cost (KWh)

Fixed proactive
comfort cost

|
1500 } k.S

~g

o
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400 600 RO 1000 1200 1400 1600 1800 2000 2200
Comfort weght (C)

Figure 8.12Total energy and comfort costs (cascade movement scenario)

Table 8.9 shows the comfort and energy costs obtained wtheme is no
randomness on theccupancy times for variouslues of the comfort weigkit
and for two different values @ (O ¢ xand167). The occupancy times of the
zones wereset to the mean values provided in the last row of TaldleAs it is
observed, extremely low comfort ¢escan be achieveth this case which
implies that the right modeling of theccupancy times is of paramount

importance to the process.

Table 8.9
Energy and Comfort costs for constant occupancy times

Comfort weight 500 1000 1500 2000

T Comfort cost 2615 72 67 67
Energy cost 7.15 9.02 9.73 10.2

T Comfort cost 2856 72 71 64
Energy cost 7.79 9.11 9.77 10.2
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Finally, Figure 8.13 h o ws
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the temperature of zone Il, although zoleis the last zone visited, starts
increasing (at a slower ratejuch earlier. This is because zone Il neighbors
zones | and/ which are heated in earlier stages of the process.
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Figure 8.13Temperature profiles of zones (cascade movement scenario)
8.4Summary
The results of the two methods aimed to energy efficienoyrolconcerning the
energy consumption control as well as the maintenance of the thermal comfort
were presented in this chapter.
8.4.1Results of the nitial approach to energyefficiency control
The initial approach which described in Section 7.2.2 consisting of three
al gor i thhomps”-hopP12 and “Adaptive”) of ener

evaluated. The simulation was based on the aforementioneczarnieemodel

with certain arget temperatures set to each zone and the random mobility of the

occupants trough the nine zones had the following characteristics:

1 The mean value of the residence time

of the occupants was

quantized into four states with certain value each state and simulated one
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at a time: short time (st=250sec), medighort time (mst=500sec),
mediumlong time (mlt=750sec), and long time (It=1000sec).
1 For all zones the mobility pathef the occupants were based on certain
probabilities of zone visits.
1 Zone I, has been used as the only entrance zone for all simulations, since
there was no significant diversion comparing with other any entrance
zone.
The above algorithms and mobilitharacteristics were simulated and compared
with t-heoaé&ui Ver’eaacntd vieFulslchemes and the
evaluated as follows:
T The ‘pFwlalcti ve” scheme resul ted wi t
consumption while instead, it resulted with the leiscomfort time

which was reasonable since all zones were heated even unoccupied and

none of the zones'’ temperature was f &
threshold.
T The -hop” algorithm has achieved t he

consumption, while the thirdnd the fourth greater energy consumption

achieved -Hop™™m 4drmdr etalket i“vieu’l Ischeme resp
T The second best di scomfort -homé& has

whil e the third and -hfoopu'r tahn @aacthti uebkee’d. f

respectively.

Subsequently, the algorithms were evaluated utilizing diffeéenwalues for

each zone, specifically: Farones)i6 ) QOcdthe O =1000sec, for zone Il the

O =500sec, for zones I, IV & VIII th&® =750sec and finally for zones V & VI
theO=250sec. The “Adaptive” algorithm whic
above algorithms ¢hop, 2hop, Fultproactive, Fulreactive) based on the logic

of the short to | ong occupants residenc
were as follows:
T The *“ Adaptive” algorithm was the seco

“Fwulelacti ve?™” was the best.
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T On t he ot her hand, t he “Adaptive” i
di scomfort t irneeactthhavre”t hoene“. Ful |

T The <conclusion of hhe saltgaarti tthhmes ' “ Ad
achieved satisfactory energy consumption along with an equally

satisfactory time where the zones are in a comfort condition.

8.4.2Results of he method based on the SID model
Next, the method of energy efficiency control basedtlm SID model was
evaluated which consisted of two phases of operation: the Training phase and the
Decision phase.
The evaluation of the training phase mechanism was the same as in Section 6.3.2.
Subsequently, the “deci si stad,’by gnulatinge of t h
two scenarios of occupants’ movement : a)
zones (Figure7.3) and b) the movement in cascade from zone to zone following a
certain path (Figure 7.4). For both scenarios the occupation time was simulated
with two distribution types: a) Gamma distribution and b) Pareto distribution.
In the first scenario of movement (a), occupants enter the first zone (zone 1) at
time instant 5000 sec, where the heat gain was 900W and the target temperature
wasp g . After a random period of time they were entered the adjacent zone
(zone 1V), where the heat gain was 1200 W, the target temperaturevgas
andthey stayed for 3600 sec. The evaluation was as follows:
1 This scenario, was first evaluated with Gamma distribution, where the
shape parameters wete: v andl such that the expected value f
O& | X ,was 3600 and 7200. The decision peridd ¢ xsec and
200 runs of simulation were implemented.
1 The simulation of the temperature profiles of the two zones (1&IV) for
two values of the total comfort weightshowed a reasonable behaviour.
Ford T which was the case of the full reactive heating of zone 1V, the
heater was remaining off until the detien of the first entrance of the
occupants. For a larger value#f# p 1t 1t Tithe heater was forced to

be turned on in an effort to reduce the discomfort penalty.
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1 Then, # had been taken values in the range of- J@000] with a step of
1000 and a# was observed the higher value#fthe more energy was
consumed with the highest energy value wher0 (full reactive
heating).

1 As it was observed for the total energy cost (in KWh) for both cases
(3600 & 7200), the higher value #f the more mergy is consumed.

1 The same scenario was then simulated for Pareto distributed occupation
times of zone | [equations (8.2) and (8.3)] and at first stage the pdf of the
Pareto  distribution was simulated, for four values of
® & o mw T Y fone T with a suitable value of so that the
mean value of the occupation period was 7200.

1 As it was observed, the total comfort cost for various values of the
comfort gaind was improved for a 50% compared to the full reactive
case and this was achieved éor p 1 Tamdw =300.

1 The heavy tail of Pareto distribution caused some extremely high values
of the occupation period which resulted to an increase of the total
consumecenergy.

Next, the second scenario of movement (b) was simulated where the occupants
were moving in cascade from zone to zone following a certain path. In each
visited zone a target temperature as well as a heating gain had been set. The
occupancy time oéach zone was considered as an exponential random variable
with certain mean value and this assumption was the least favorable due the
memoryless property of the exponential distribution. The results were averages
over 100 runs fo® ¢ yandO p ¢ gnd tley have been evaluated as follows:

1 As it was observed, considerable comfort gains achieved for a moderate
increase of the consumed energy.

1 Also, non random occupancy times were tested for various values of
comfort weightd and forO ¢ xandO p @.)Extremely low comfort
costs were observed in this case and this implies that the right modeling

of the occupancy times is very important.
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Chapter 9

Conclusions and future work

9.1 Summary and Conclusions

Two mainfunctionsconcerning the control of the energy spend for heating in
HVAC systemswhich include novel proposed methods, constitutesl content

of this thesisAll proposed methods aimed at a serious scientific contribution to
the total effort for a more sophisttea energy consumption control in the HVAC
systemstechnology Methods for detection of abnormal behavi@mancerning

the unexpected power consumptiarere included in thefirst control function,

while the second control function contained methods forngpraved energy
efficiency control.

All the proposed methods were integrated simulation works based on a multi
zone space model of nine zones with certain arrangement and dimensions,
equipted with a wireless sensor network that was consisted of wireléss aob
temperature and occupancy sensors.

The first contribution of this thesis is the utilization of the WSN in a HVAC
system thabasesthe development of more sophisticated control tegniques. In
this reasearch the implementation of the WSN had the following form: All
wireless nodes were scatered in the nine zones, one in each zone and the WSN
was capable to operate in centralized modemtine nodes were sending their
readings to a central computer unit, or in dicentrlized mode when all nodes were
comunicatingheir readingsvith each other.

The outside temerature was based on the
temperature variationduring the day period while the dynamics and uniformity

of the zones’'s temperature were baded on
In Chapter 2 the evolution of the HVAC systems with the most important
featuresof their current technology related to this work, as well as the state of the
art technologyof the HVAC control systems were presentdthe proposed

methods élied on the capability and efficiency of the current technology of the
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HVAC control systemso provideinovative mechanisms (algorithms) of energy
control. Further in the same Chapteecentvaluable relatedesearchworks of

both directions were presented showing different research apprpaches the
uniqueness and innovation of the proposethous to be distinguished.

In Chapters 3 the fundamental elements: the sirmgiae, themulti-zone space
modelandthe weather model were analyticaly presented while in Chapter 4 the
detection algorithm (CUSUM) and the system identification model (SID) were
also presented. The CUSUM algorithm was imlemented as the basic detection
technique in both methods for thecuatedetection of abnormal situations (first
and second objective), while the SID model was utilized as the basic predictive
model of the temperature behaviour of the zoirethe detectiormethod of the
second objective as well as in the method of tleth objective.

In Chapter 5 the methotbgy of the first control functionconcerning the
detection of abnormal sistuations in HVAC systems were presented. Both
methods achieed to detect abnormal behaviouwoncering the power
consumption, each one withfférent apprach.The first method successfully
detected divergenced the power consumption than the anticipated, while the
second methoguccesfullydetected temperature deviations due to the higher
infiltration gainas well as the higher heat gahet may cause unexpected and
continues power consumption.

The points of the total contribution of the first control function and the

achievement of the first and second objective were as follows:

1 The utilization of the deterministic SID as a temperature predictive
model. The stong potential @fformed the basis and supported the idea
for the prediction of the temperature behaviour of each zone in the multi
zone model. The functionality of tHelD that requires the given inputs
and the observed outputs in order to predict the system statiethe
parameter matricesallowed the temperature measurements of the
surrounding zones (or the outside temperature) as well as the power of the
heater to bentered as inputs, while the temperature of the zone itself to
be entered as the outptthis situation produced an obvious logic for
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collecting the dynamics (temperature and heat power measurements) of

all zones for a certain period of time in order toutiézed appropriately

by the SID model. According tthe rationale of the methods, the time

period that was decided foretleollectionof the dynamicsvas the period

of the day(24h) Thereafter with the data arrangement in input/output

form, the relevat parametric matriceA,B,C,and D of the state space

model of each zone were identified by the STDus, the temperature of

each zone was predicted successfully, with convergence to the real
temperature in short period of time. This process called“ther ai ni ng
phase” was wutilized both by the metho
of abnormal situations, as well as by the metbbthe fourth objective

concerning the energy efficiency control.

The detection mechanism that was based on predicted temperature
deviations and the accuracy of the CUSUM change detection algorithm.
The mechanism provided reliable and accurate detection of the high
infiltration gain as well as th high heat gain.

The daa of the dynamics collected during the training phase. The state
space model of each node was predicting the temperature of each zone by
using the parametric matrices of the SID, and any change in the dynamics
the system resulted to a deviation of the mted temperature from the

real one. Significant supporting mechanism was the CUSUM algorithm.
The algorithm in the presented method was utilized to detect changes in
the mean of the rate change of the prediction error. Thus, the algorithm

provided accurat and reliable detection of temperature deviations.

As an initial approach for the above novel mechanism was the method of
the first objective, which utilized a WSN on a decentralized mode of
operation in a mulizone space with the task to evalute #tcuracy of

the CUSUM algorithm for the detection of power divergencies. The

method succecfully detected the change in the distribution of the power
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profile when a heat | eackage and a he
temperature. Each wireless nodeswcapable to control the heating

source which was located into the zone with a Pl controller and also had

the functionality to detect possible higher power consumption than the
anticipated one. A state space model was running in each node where
accordingto the input vector (surrounding temperature values), the
temperature of the zone and the target temperature, the node was able to

specify the ideal power profile. By comparing the real and the
hypothetical power profile during operation, the node was t@btietect

possible deviations

In Chapter 7 the methods of the second control function of this thesis concerning
the energy efficiency control, were presented. Both methods were aimed to
control the energy consumption for heating in HVAC systems, while
concurrently maintain the thermal comfort to satisfactory levels.

The basic concept that characterize the logic of the proposed merthods is the
proactive heating the unoccupied zone in the ragdtie spaceThe parameters
taken into accountn these methodsvere: the occupancy of the zones, the
mobility of the occupants, the occupation time of the zomeswell as the
temperature predictiof.he points of the total contribution of the second control

function and the achievement of the third and fourth olvgaetere as follows:

1 The method of the fourth objective for the energy efficiency control,
managed to apply proactive heating to unoccupied zones according to the
proposed risk criterion and achieve satisfactory results in balancing the
energy cost and the discomfort cost. Thethod required two kinds of
prediction: the temperature prediction and the occupancy prediction. As
mentioned before, the potential and effectiveness of the SID has been also
utilized in this method. The “trainin
in the method of the second objective for the detection of abnormal
situations. This mechanism formed the temperature prediction as required

by the method. Furthermore, the wireless nodes of temperature and
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occupancy sensors of each zone were exchangingethgetature and
occupancy information between them and the neighboring nodes. The
proposed mechanism aimed to a proactive heating of the zones or not, by
implementing a periodical computation of the risk of activating the heater
or not. The computation ohé risks was relied on the relative weights of
the energy and discomfort costs, by managing the balance between the
total energy consumed and the total discomfort dosb scenarios were
examined in thé method: the two adjacent zone scenario where one zo
was occupied and the other not, and the rzgltie scenario khere the
occupants were moving in a cascade mode following a certainpétre
method was framed by the appropriate mathematical models for the
above scenarios, as well as the probabilityrithstions to model the
occupation times according to rationale as presented in the evaluation of
the results of this method.

1 An initial approach for the above novel method was the method of the
third objective concerning the energy efficiency contrdhe Tmethod
achieved a satisfactory balance between enery consumption and comfort
while the occupation time of the zones was exponentially distributed.
Three algorithms were proposddio of which were preliminary to the
third one. The preliminary algorithmsere the "thop" and the "zhop"
which aimed to provide proactive heating to the neighbor zones while the
third one namely "Adaptive" combines the functionality of the
preliminary ones with the knowledge of the occupation times and applied
their functiondity appropriately. The Adaptive algorithm also applied the
“folrloacti veéda@amni veduldchemes appropri at

The results of the proposed methods of both directions were presented in
Chapters 6 and 8, the abnormal situations detection and the energy efficiency
control respectively. All methods exhibited satisfactory results, which verified
and supported their camtution. Concisely, the results of the methods of both

directions were evaluated as follows:
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The results of the methods of the first direction:

1 The first method as an initial approach to the detection of abnormal
situations exhibited satisfactory resul Initially, the experimental
environment was created with regard to temperature behaviour and power
profile of each zone of the multibone space model, which showed the
desired behaviour. Thereafter, the mechanism of detection of unnecessary
power consmption was evaluated. An infiltration gain due to an
exogenous factor i.e. an open window was added to the dynamics of the
system and by implementing the CUSUM sequential detection algorithm,

the detection was successfully made within a reasonable tinoel per

1 The second method of the same direction also exhibited the desired
results of detection. First, the training phase was implemented where the
data of the dynamics of the zones were collected over a period of 24h.
Thereafter, the appropriate arrangeint® input/output form was made
with the logic that the temperature measurements of the neighbor zones
and the outside temperature, as well as the heating power were the inputs,
while the temperature of the zone was the output. Based on this
arrangementhie SID model identified the matricéd hd and O which
they were communicated to the wireless nodes and the temperature
prediction of the zones was made accurately. Subsequently, when a
hypothetical heat leakage was added into a zone by increasing th
infiltration gain, a change in the dynamics of the zone occurred. The same
situation occurred (change in the dynamics) when the opposite of the heat
leakage was created, by adding a hypothetical extra source with 100W
power. The CUSUM algorithm was imptented at a certain time instant
in both the above scenarios and the change in the mean of the prediction
error was detected successfully. The method finally was evaluated with
the presence of an exogenous heat noise with power in the range of [50,
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100] watt uniformly distributed and with time exponentially distributed
with a mean of 180 sec. The temperature deviation was again clearly

showed.

The results of the methods of the second direction:

1 The first method as an initial approach to the energy efficiency control
aimed to control the energy waste while maintaining the thermal comfort
to a satisfactory level. As mentioned above the method proposed three
al gor i thtops'-h 0122 ande "™)Adtalpat vprovi ded |
heating to the adjacent zones or in addition to the neighbor of them, when
occupancy was detected into a zone, each one with different aspect. The
first two preliminary algorithms were evaluated one at a time, with four
state vlues of the mean of the residence time (250, 500, 750, 1000 sec)
of the occupants into the zones of the mzithe model. The evaluation
results wer e ¢ oRppraoraecdt i wiet”hr atradet 1 “NFeu’l “I F
schemes, which were: all zones were heated wb&upancy was
detected to one zone of the space and only the occupied zone was heated,
respectively. Reasonable and expected results came out of the above
compari son. The “Adaptive” al gorithm
preliminary algorithms togeéhr wi t h -prloeact Fué-l and “
reactive” schemes in an integrated un
implement each one according to the mean value of the occupation time
of the zones from the shortest to the
wast he second better i nreaerigye’sawas si
best. I n conclusion the ®“Adaptive” ac
consumption along with equally satisfactory comfort time of the zones,
than the other algorithms.

1 The second methofbr energy efficiency control aimed to balance the
energy cost with the comfort cost and it was based on the SID predictive
model. The method was consisted dvo phases of operation:
the “training phase” and the ®“decisi ol
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The i“ntimag phase”, where all data with
collected was applied exactly as in the second method for anomaly
detection which was described in Sect
phase” that was | mpl e meauateddwitibthe t he WS
application of two scenarios of the occupants' movement: a) the
movement between two adjacent zones and b) the movement in cascade

from zone to zone following a certain path. The occupation time for both
scenarios was simulated with Gamaral Pareto distributions.

The first movement scenario was initially simulated for 200 runs, with

Gamma distribution with certain values of the shape param@lers& b )

such that the expected valu® ¢ was 3600 and 7200, and also with

certain valueof the decision period®. The total comfort weight was

taken values in the range ofA.0000].

The evaluation of this scenario came out with a reasonable conclusion

that the higher was the value of the comfort weightthe more energy

was consumedvith the highest energy value whén Tt (full reactive

heating).

The evaluation of the same scenario that was simulated with Pareto
distributed occupation time was that, the total comfort cost for various

values of the comfort gaid was improved for a 50% compared to the

full reactive case and this was achieveddor p ™ randw =300.

Note that the pdf of the Pareto distribution was simulated for four values

of @ & o mtwhx Y fore T and mean occupation period of

7200. Etremely high values of occupation period were observed due to

the heavy tail of the Pareto distribution and this caused an increase of the

total consumed energy.

Subsequentl vy, the second scenario of
evaluated, where the occupsnwere moving from zone to zone in

cascade, following a certain path. The occupation time was exponentially
distributed and this was the least favorable assumption for adjacent zones,

due the memoryless property of the exponential distribution.
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Considerale comfort gains were achieved for a moderate increase of the
consumed energy, and extremely low comfort costs were observed when
there was no randomness on the occupancy times implying the

importance of the right modeling of it.

9.2 Future work

First adion of the future work will be the validation of the proposed methods.
Further to the work for detection of abnormal situatiothee utilisation of
sophisticated classifiers such as support vector machines (SVM) may be
investigated. As supervised learnimgpdels with associated learning algorithms

by recognizing patterns and analyzing data, may be utilized for classification and
regression. Moreover, neural networks may also be investigated that incorporate
more features of the reference signals in thesdet process for the early
detection of abnormal behaviour.

Several extensions and modifications of the proposed metbiodenergy
efficiency are possible. The comfoparamete® may depend on the zone, the
number of occupants and the current statfisthe zones. Moreover, this
parameter may be time variable,. id#fferent values may be used for day and
night hoursRegarding the decision process itself, there is no need to be executed
at regular time epochs. If the energy consumed by the wirelessrsgodes is an
issue, we may take decisions at irregular time epochs, depending on the
occupancy predictions of the zones. The computation of the risks, used by the
decision process, may take into consideration additional parameters that affect
energy casumption and/or the thermal comfort of the occupants. For example,
an open windows situation may be easily detected and incorporated suitably in
the decision procesMoreover the method will be evaluated wRharticle swarm
optimization (PSO) stochastitechnique for the best possible solution for

balancing the energy and the discomfort costs.
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