Please use this identifier to cite or link to this item: http://buratest.brunel.ac.uk/handle/2438/9344
Title: Comparative study of heat transfer and pressure drop during flow boiling and flow condensation in minichannels
Authors: Mikielewicz, D
Andrzejczyk, R
Jakubowska, B
Mikielewicz, J
4th Micro and Nano Flows Conference (MNF2014)
Keywords: Two-phase pressure drops;Heat transfer coefficient;Boiling;Condensation
Issue Date: 2014
Publisher: Brunel University London
Citation: 4th Micro and Nano Flows Conference, University College London, UK, 7-10 September 2014, Editors CS König, TG Karayiannis and S. Balabani
Series/Report no.: ID 85
Abstract: In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R245fa, R600a, R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure is considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of non-isothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects the bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the non-adiabatic effect is clearly pronounced.
Description: This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.
URI: http://bura.brunel.ac.uk/handle/2438/9344
ISBN: 978-1-908549-16-7
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection

Files in This Item:
File Description SizeFormat 
MNF2014_MABM.pdf1.09 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.