Please use this identifier to cite or link to this item: http://buratest.brunel.ac.uk/handle/2438/9284
Title: Effect of varying magnetic fields on targeted gene delivery of nucleic acid-based molecules
Authors: Çikim, T
Oral, Ö
Ünal, Ö
Gözüaçik, D
Yaǧci Acar, HF
Koşar, A
4th Micro and Nano Flows Conference (MNF2014)
Keywords: Ferrofluid;PEI;SPION;transfection;magnetic actuation;MCF-7;PC-3;DU-145;RT-4
Issue Date: 2014
Publisher: Brunel University London
Citation: 4th Micro and Nano Flows Conference, University College London, UK, 7-10 September 2014, Editors CS König, TG Karayiannis and S. Balabani
Series/Report no.: ID 24
Abstract: The importance of high transfection efficiency has been emphasized in many studies investigating methods to improve gene delivery. Accordingly, non-viral transfection agents are widely used as transfection vectors to condense oligonucleotides, DNA, RNA, siRNA, deliver into the cell, and release the cargo. Polyethyleneimine (PEI) is one of the most popular non-viral transfection agents. However, the challenge between high transfection efficiency and toxicity of the polymers is not totally resolved. The delivery of necessary drugs and genes for patients and their transport under safe conditions require carefully designed and controlled delivery systems and constitute a critical stage of patients’ treatment. Compact systems are considered as the strongest candidate for the preparation and delivery of drugs and genes under leak free and safe conditions because of their low energy consumption, low waste disposal, parallel and fast processing capabilities, removal of human factor, high mixing capabilities, enhanced safety, and low amount of reagents. Motivated by this need in the literature, a platform for gene delivery via magnetic actuation of nanoparticles was developed in this study. The use of PEI-SPION (Super paramagnetic ironoxide nanoparticles) as transfection agents in in vitro studies was investigated with the effect of varying magnetic fields provided by a special magnetic system design, which was used as magnetic actuator offering different magnet's turn speeds and directions in the system. Results obtained from magnetic actuator systems were compared to the experiments without actuation and significant enhancement was observed in the transfection efficacies.
Description: This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.
URI: http://bura.brunel.ac.uk/handle/2438/9284
ISBN: 978-1-908549-16-7
Appears in Collections:Brunel Institute for Bioengineering (BIB)
The Brunel Collection



Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.