Please use this identifier to cite or link to this item: http://buratest.brunel.ac.uk/handle/2438/3310
Title: Exact solution to a class of functional difference equations with application to a moving contact line flow
Authors: Lawrie, JB
King, AC
Keywords: Barnes double gamma function;Integral representation;Inviscid fluid wedge;Functional difference equation;Moving contact line
Issue Date: 1994
Publisher: Cambridge University Press
Citation: European Journal of Applied Mathematics. 5(2): 141-157
Abstract: A new integral representation for the Barnes double gamma function is derived. This is canonical in the sense that solutions to a class of functional difference equations of first order with trigonometrical coefficients can be expressed in terms of the Barnes function. The integral representation given here makes these solutions very simple to compute. Several well-known difference equations are solved by this method and a treatment of the linear theory for moving contact line flow in an inviscid fluid wedge is given.
URI: http://journals.cambridge.org/action/displayAbstract?aid=2318708
http://bura.brunel.ac.uk/handle/2438/3310
DOI: http://dx.doi.org/10.1017/S0956792500001364
ISSN: 0956-7925
Appears in Collections:Dept of Mathematics Research Papers
Mathematical Sciences

Files in This Item:
File Description SizeFormat 
Exact solution to a class of functional difference.pdf788.5 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.