Please use this identifier to cite or link to this item: http://buratest.brunel.ac.uk/handle/2438/13560
Title: Experienced grey wolf optimizer through reinforcement learning and neural networks
Authors: Grosan, C
Emary, E
Zawbaa, H
Keywords: Reinforcement learning;Neural network;Grey wolf optimization;Adaptive exploration rate
Issue Date: 2016
Publisher: IEEE
Citation: IEEE Transactions on Neural Networks and Learning Systems, pp. 1-13, (2016)
Abstract: In this paper, a variant of Grey Wolf Optimizer (GWO) that uses reinforcement learning principles combined with neural networks to enhance the performance is proposed. The aim is to overcome, by reinforced learning, the common challenges of setting the right parameters for the algorithm. In GWO, a single parameter is used to control the exploration/exploitation rate which influences the performance of the algorithm. Rather than using a global way to change this parameter for all the agents, we use reinforcement learning to set it on an individual basis. The adaptation of the exploration rate for each agent depends on the agent’s own experience and the current terrain of the search space. In order to achieve this, an experience repository is built based on the neural network to map a set of agents’ states to a set of corresponding actions that specifically influence the exploration rate. The experience repository is updated by all the search agents to reflect experience and to enhance the future actions continuously. The resulted algorithm is called Experienced Grey Wolf Optimizer (EGWO) and its performance is assessed on solving feature selection problems and on finding optimal weights for neural networks algorithm. We use a set of performance indicators to evaluate the efficiency of the method. Results over various datasets demonstrate an advance of the EGWO over the original GWO and other meta-heuristics such as genetic algorithms and particle swarm optimization
URI: http://bura.brunel.ac.uk/handle/2438/13560
ISSN: 2162-2388
Appears in Collections:Dept of Computer Science Research Papers

Files in This Item:
File Description SizeFormat 
FullText.pdf805.26 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.