Please use this identifier to cite or link to this item: http://buratest.brunel.ac.uk/handle/2438/13398
Title: Geometric aspects of space-time reflection symmetry in quantum mechanics
Authors: Brody, DC
Bender, CM
Hughston, LP
Meister, BK
Keywords: Geometric aspects;Quantum mechanics
Issue Date: 2016
Publisher: Springer International Publishing
Citation: Non-Hermitian Hamiltonians in Quantum Physics, 184: pp. 185 - 199, (2016)
Abstract: For nearly two decades, much research has been carried out on properties of physical systems described by Hamiltonians that are not Hermitian in the conventional sense, but are symmetric under space-time reflection; that is, they exhibit PT symmetry. Such Hamiltonians can be used to model the behavior of closed quantum systems, but they can also be replicated in open systems for which gain and loss are carefully balanced, and this has been implemented in laboratory experiments for a wide range of systems. Motivated by these ongoing research activities, we investigate here a particular theoretical aspect of the subject by unraveling the geometric structures of Hilbert spaces endowed with the parity and time-reversal operations, and analyze the characteristics of PT -symmetric Hamiltonians. A canonical relation between a PT -symmetric operator and a Hermitian operator is established in a geometric setting. The quadratic form corresponding to the parity operator, in particular, gives rise to a natural partition of the Hilbert space into two halves corresponding to states having positive and negative PT norm. Positive definiteness of the norm can be restored by introducing a conjugation operator C ; this leads to a positive-definite inner product in terms of CPT conjugation.
URI: http://link.springer.com/chapter/10.1007%2F978-3-319-31356-6_12
http://bura.brunel.ac.uk/handle/2438/13398
DOI: http://dx.doi.org/10.1007/978-3-319-31356-6_12
ISSN: 0930-8989
Appears in Collections:Dept of Mathematics Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf149.05 kBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.