Please use this identifier to cite or link to this item: http://buratest.brunel.ac.uk/handle/2438/12890
Title: An accurate and computationally efficient small-scale nonlinear FEA of flexible risers
Authors: Rahmati, MT
Bahai, H
Alfano, G
Keywords: Flexible risers;Frictional contact;Periodic boundary condition;FE modelling
Issue Date: 2016
Publisher: Elsevier
Citation: Ocean Engineering, 121: pp. 382 - 391, (2016)
Abstract: This paper presents a highly efficient small-scale, detailed finite-element modelling method for flexible risers which can be effectively implemented in a fully-nested (FE2) multiscale analysis based on computational homogenisation. By exploiting cyclic symmetry and applying periodic boundary conditions, only a small fraction of a flexible pipe is used for a detailed nonlinear finite-element analysis at the small scale. In this model, using three-dimensional elements, all layer components are individually modelled and a surface-to-surface frictional contact model is used to simulate their interaction. The approach is applied on a 5-layered pipe made of inner, outer and intermediate polymer layers and two intermediate armour layers, each made of 40 steel tendons. The capability of the method in capturing the detailed nonlinear effects and the great advantage in terms of significant CPU time saving are demonstrated by comparing the results obtained on elements of pipe of different lengths, equal to one pitch length Lp as well as Lp/5, Lp/20 and Lp/40.
URI: http://www.sciencedirect.com/science/article/pii/S0029801816301755
http://bura.brunel.ac.uk/handle/2438/12890
DOI: http://dx.doi.org/10.1016/j.oceaneng.2016.05.055
ISSN: 0029-8018
Appears in Collections:Dept of Mechanical Aerospace and Civil Engineering Research Papers

Files in This Item:
File Description SizeFormat 
Fulltext.pdf6.28 MBAdobe PDFView/Open


Items in BURA are protected by copyright, with all rights reserved, unless otherwise indicated.